
YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

1VIRUS BULLETIN CONFERENCE OCTOBER 2008

YOUR COMPUTER IS NOW
STONED (...AGAIN!). THE RISE OF

MBR ROOTKITS
Kimmo Kasslin

F-Secure Security Labs, Suite 2A-5-2, Level 5, Block
2A, Plaza Sentral, Jalan Stesen Sentral 5, 50470

Kuala Lumpur, Malaysia

Elia Florio
Symantec Security Response, Ballycoolin Business

Park, Blanchardstown, Dublin 15, Ireland

Email kimmo.kasslin@f-secure.com,
elia_fl orio@symantec.com

ABSTRACT
The war against invisible malware has been taken down to a new
battleground, the lowest level seen so far in the wild: the Master
Boot Record. The MBR rootkit, a.k.a. Mebroot, appeared in the
wild in December 2007 and rapidly evolved from earlier beta
versions to a fully working malware product. The Mebroot
rootkit uses techniques never before seen in modern threats and
so it can be considered the next generation of stealth rootkit and
kernel infector, written by professional malware developers and
clearly not for fun. The most notable characteristic of Mebroot is
the fact that it replaces the system’s Master Boot Record with
malicious code that owns the machine completely from the boot,
before the operating system itself gets loaded. Years after Stoned

and Michelangelo, Master Boot Record infection has been
reborn with Mebroot on modern platforms. However, this
technique is only the tip of the iceberg of a bigger cybercriminal
project, since the fi nal goal of Mebroot is to download and install
additional banking trojan components on the infected machine.
In this paper we present an extended view of the MBR rootkit’s
features and its evolution – including a detailed look at its disk
stealth, fi rewall bypassing, anti-analysis and anti-detection
techniques.

MEBROOT EVOLUTION
We can trace back the fi rst evidence of ‘Mebroot’ (the MBR
rootkit) to the end of 2007. According to the PE timestamp of the
oldest sample seen, it was compiled in the early days of
November 2007 and distributed multiple times before the end of
the year. An interesting timeline of Mebroot evolution was fi rst
outlined by Matt Richard from iDefense [1], who initially
discovered the fi rst sample in the wild together with the GMER
team [2].

What we know is that during November 2007 a well-known
malicious domain (hxxp://gfeptwe.com) that had been used in
the past to distribute and install variants of Trojan.Anserin (a.k.a.
Sinowal or Torpig) began to serve copies of the MBR rootkit for
a limited period of time. The malware was installed via drive-by
exploits using a set of old Microsoft vulnerabilities, probably to
stay under the radar during this ‘beta’ release stage. The whole
timeline reads like a big development and malware QA plan; in
fact all the samples released in the initial period have close PE
timestamps and very small changes in the code. Two waves of
drive-by attacks related to Mebroot took place between
December 2007 (Mebroot ‘v.0’ or beta release) and January 2008

Figure 1: Timeline of Mebroot evolution from ‘beta’ to fi nal release.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

2 VIRUS BULLETIN CONFERENCE OCTOBER 2008

(Mebroot ‘v.1’ release). These attacks were followed by a period
of calm, probably as a result of the popularity and media
coverage gained by the rootkit in January. In March 2008 [3] the
fl ow of attacks installing Mebroot resumed steadily, this time
spreading a second, improved variant (‘v.2’ release) of Mebroot
which uses aggressive countermeasures against all AV tools and
anti-rootkit programs created to detect and defeat earlier
variants. In June 2008 during our analysis we also found some
improvements and additions to the rootkit code that led us to
believe that we were in the middle of a ‘v.3’ release.

PACKER CHANGES OVER TIME
AV researchers and the entire security community have clearly
been impressed by the efforts of Mebroot’s development team.
The gang has been very active and worked with care on each
aspect of the ‘fi nal product’. This fact makes Mebroot different
from other simple backdoor programs in the wild. The
developers constantly improved the rootkit code with new
features, new stealth tricks, anti anti-rootkit routines and even
code optimization and memory checks to avoid blue-screen
errors.

At the same time they worked to enhance the dropper/installer
routine with a new technique (discussed in the following
sections of this paper) and also modifi ed the polymorphic
packer used to encrypt EXE installers. During its entire
life cycle, the polymorphic packer evolved from simple
spaghetti JMP instructions, to complicated polymorphic
artefacts mixed with anti-emulation tricks based on exceptions
and fake API calls. This nasty packer scrambles all the
execution fl ow of a program by interleaving valid opcodes with
JMP or JMP DWORD[addr] instructions. The fi nal effect is to

Figure 2: Evolution of the Mebroot packer over time.

have a piece of polymorphic code which is very diffi cult to trace
and analyse, but with the same functionality.

Analysis of the packer reveals a code that allocates one large
and one small memory buffer using VirtualAlloc(). The packer
puts a large sequence of bytes into the small buffer using a
pseudo-random generator algorithm with an initial seed key.
This buffer is used to perform the decryption of a specifi c fi le
section which gets decoded into the second allocated buffer to
form a proper executable fi le. The executable image is relocated
in memory with valid imports and is executed from an entry
point just after the fi nal VirtualFree() call of the packer. This
crazy ‘spaghetti-like’ packer has already been used by the
Trojan.Anserin malware family and is used to protect against
reversing both EXE and SYS samples (yes, the gang created a
kernel-mode version of this packer too).

OWNING THE MBR: HOW IT STARTED
It is unclear how long it has taken the authors to develop and
write the code of this sophisticated threat, but the idea of
malicious code that modifi es a system’s MBR is not brand new
and was discussed some years ago. In 2004 Greg Hoglund wrote
about MBR attacks in his book Exploiting Software [4], while
the most notable research in the area of MBR rootkits was
undertaken by Derek Soeder of eEye [5] during 2005. Soeder
created BootRoot, a proof-of-concept MBR rootkit able to
target Windows XP and 2000. Finally, researchers Nitin and
Vipin Kumar of NVLabs recently published a paper [6] about a
new type of MBR rootkit called Vbootkit, designed expressly to
work on Windows Vista. It is quite obvious that Mebroot’s
authors benefi ted from all these previous pieces of research and
this fact is confi rmed by a quick comparison of the MBR code

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

3VIRUS BULLETIN CONFERENCE OCTOBER 2008

of Trojan.Mebroot and BootRoot. A large area of the MBR
loader is almost identical to the BootRoot code published by
eEye. Mebroot’s MBR code hooks INT 13 at boot exactly as
BootRoot does with the intent of patching the OSLOADER
image (part of the NTLDR fi le) when it gets loaded. This patch
is done on the fl y with the same static signature used by
BootRoot (8BF085F6742?803D). The signature is patched with
a CALL DWORD[addr] instruction that gives control to the
second stage payload of the malware. This payload will be
discussed in more detail in the next sections.

Raw disk access under Windows
Mebroot arrives with an EXE installer that is typically between
250 KB and 350 KB for earlier variants and up to 430 KB for
recent variants. It takes control of the system by overwriting the
MBR. This attack is possible because the Master Boot Record is
still a weak point of modern OS architectures. Mebroot variant
‘v.0’ initially used a standard and documented way to read/write
MBR and raw disk sectors with normal Windows APIs.
However, Mebroot variants ‘v.1’ released after February 2008
moved to a new and very sophisticated installation procedure
which may bypass HIPS programs and try to stay under the
radar. Both techniques are described in detail in the following
paragraphs.

THE EASY WAY: OWNING A DISK WITH
CREATEFILE()
Some versions of Windows let programs overwrite disk sectors
(including the MBR) directly and without proper restrictions.
The initial reports about this MBR attack were a bit confused, so
let’s clarify some facts to understand when the attack is possible.
On Windows 2000, XP and 2003 systems, raw access to disk is
possible for any user-mode program running in ring-3 (no need
to go in ring-0!), but this requires Administrator [7] privileges!
The fact that most users run Windows as Administrator makes
them clearly vulnerable to this type of rootkit.

The issue has been known about for some time for the 2K/XP
families, while Vista was partially secured in 2006 (with
Release Candidate 2) after a successful attack demonstration
made by Joanna Rutkowska, known as the Pagefi le Attack [8].
In fact, the attack is now mitigated on Vista by UAC, which
blocks raw access to disks. Table 1 summarizes which operating
systems can be infected by Mebroot.

Windows OS
Can MBR be
infected?

Is rootkit
active?

Windows 2000 (user
is Administrator)

YES YES

Windows XP (user is
Administrator)

YES YES

Windows 2003 (user
is Administrator)

YES YES

Windows Vista (UAC
disabled)

YES NO

Windows Vista (UAC
enabled)

NO NO

Table1: Windows versions and MBR rootkit.

It is important to clarify that Mebroot can infect the Vista MBR
only if UAC is disabled, however the rootkit, even after a
successful infection, will not be able to load itself at boot
because it targets specifi c signatures of the Windows kernel not
present on Vista. In this scenario Vista users may live with an
infected MBR that boots up the operating system normally
without seeing any rootkit activity, because the malware would
never be loaded in memory. In addition to this, Vista is also
secure because its boot process is completely different from any
previous OS. It is possible that future variants of this threat may
overcome this limitation.

THE HARD WAY: DISK.SYS WRAPPER AND
THE SETWINEVENTHOOK() TRICK
The latest variant of Mebroot spotted after February 2008 uses a
different approach to perform raw operations on disk. Instead of
using CreateFile(), Mebroot loads a driver that works as a
‘wrapper’ for the system I/O driver disk.sys. Essentially the new
installer uses a kernel driver to communicate with the real OS
disk driver and to perform low-level read/write using IRP
communications.

This change in the installation technique is probably motivated
by the fact that HIPS and active protection systems started to
block suspicious CreateFile() operations on physical hard
drives. Using a kernel driver as a ‘wrapper’ to read/write the
disk can overcome this limitation, but many researchers may
notice an important fact: how can Mebroot load this ‘wrapper’
driver on the system? Is it really a good strategy? Loading a
kernel driver may be fl agged as suspicious as well and so is
pointless. The complete loading and infection strategy is
described step by step with the help of event-driven diagrams in
Figures 3 and 4.

The Mebroot installer fi le (‘ld.exe’ in this example) fi rst takes
care of scheduling a self-delete operation at reboot using
MoveFileEx() and then drops an executable (‘1.tmp’) in the
%TEMP% folder and runs it. This second program is the
user-mode MBR infector component and runs a waiting loop
which keeps trying to create a non-existent device named
\\.\RealHardDisk (N.B. the real symbolic link to the hard-disk is
\\.\PhysicalDrive). While ‘1.tmp’ keeps trying and re-trying
without success, the installer ‘ld.exe’ runs itself with the
parameters ‘--cp 2.tmp’. The effect of this parameter is to force
‘ld.exe’ to copy itself as ‘2.tmp’ with the DLL bit set.
Essentially the fi le ‘2.tmp’ is a DLL version of ‘ld.exe’. At this
stage of installation ‘ld.exe’ continues execution by reading
USER32.DLL from disk and checking if the fi rst fi ve bytes of
SetWinEventHook() match between memory and disk images.
If not, it restores the original fi ve bytes to unhook the API
(typically hooked by HIPS and security programs). This
particular API is an unusual and not well-documented trick to
inject a DLL into the Explorer process context without active
injection (e.g. OpenProcess/CreateRemoteThread). The installer
calls this API passing three important parameters: Explorer
process id, the path of the ‘2.tmp’ DLL fi le and the export
routine ‘wep()’.

After that, the Mebroot installer code runs completely from
the Explorer process space and so any changes to the OS

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

4 VIRUS BULLETIN CONFERENCE OCTOBER 2008

Figure 3: Mebroot installer technique with SetWinEventHook().

Figure 4: Mebroot installer code injected into EXPLORER and SVCHOST.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

5VIRUS BULLETIN CONFERENCE OCTOBER 2008

confi guration do not appear suspicious because they are made
by Explorer itself. The function ‘wep()’ performs another step in
the whole infection strategy by creating a new DLL service
named ‘{BEE686B9-4C84-4487-9D72-9F40F051E973}’ which
is added to the list ‘HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\SvcHost\netsvcs’. The service is started
immediately and this will execute ServiceMain() of the ‘2.tmp’
module into SVCHOST context with full OS privileges
enabled. The Mebroot installer is now ready to drop the
‘wrapper’ driver (4.tmp) and register it with the name
‘{DEF85C80-216A-43AB-AF70-1665EDBE2780}’ as a
kernel-mode service. When the kernel driver runs, it creates the
device \\.\RealHardDisk and is immediately synchronized with
‘1.tmp’ which was waiting for exactly this moment to start the

Figure 5: Raw access to disk with CreateFile() API.

infection. Read and write operations to
disks are performed using
DeviceIoControl() requests to the
‘wrapper’ driver. At the end of the
infection, the installer ‘ld.exe’ takes care of
deleting all the fi les and services created,
to avoid suspicious traces.

OWNING THE MBR
Mebroot tries to infect the fi rst 16 disk
drives connected to the machine. The side
effect of this behaviour is that in some
cases the rootkit also infects external USB
disks and hard drives (so can be considered
a worm?). Infected external disks would not
have an active infection, because typically
they are not used to boot the operating
system, but the disk will still contain traces
of the malware on some sectors.

During the installation phase, the malware
fi rst reads the current disk MBR and checks some characteristics
of the drive like the number of bytes per sector (it expects
512 bytes), the magic boot signature 0x55AA at the end of the
MBR and whether the drive has already been infected (the
infection marker is the DWORD 0xAD022C83 at offset 0x16 of
the MBR). Next, it parses the partition table to fi nd the physical
end of the disk and it verifi es that the un-partitioned slack space
at the end is suffi cient to write its own malicious code. The
installer usually needs at least ~650 free sectors that will be
used to store the main rootkit driver. This strategy is clever for
two reasons: the driver is not stored as a fi le on the system, but
it is stored in raw disk sectors. Secondly, writing the malicious
driver after the end of the disk means that some forensic

expertise is required to extract samples
from infected machines. The installer
makes a note of the sector where the
rootkit executable is stored and then adjusts
in memory its Payload Loader shellcode
that will load the SYS driver at the next
reboot. Finally, it overwrites three sectors
immediately before the beginning of the
fi rst partition. On Windows 2000 and XP
with a single partition, Mebroot typically
overwrites sectors 60, 61 and 62. These
sectors could be different on systems with
multiple OS and disk partitions.

OWNING THE SYSTEM FROM
THE BOOT

The complete scheme of the Mebroot
loading process is shown in Figure 6.

A step-by-step description of the rootkit
boot process and kernel infection follows:

1. The infected MBR reserves 2 KB of
conventional memory and relocates
itself from 0x7C00 to 0x0000.Figure 6: Mebroot loading process – how to own the system from the boot.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

6 VIRUS BULLETIN CONFERENCE OCTOBER 2008

2. Next, it reads payloads from sector 60s (kernel patcher)
and 61 (payload loader) into memory blocks adjacent to
the relocated code.

3. The MBR code hooks INT 13 and passes control to
relocated code at 0x004D address.

4. It reads sector 62 (old MBR) back to 0x7C00 memory
and passes control to it; the OS starts booting up
normally while INT13 is hooked by the threat.

5. The hooked code intercepts all disk-reading operations
and patches the OSLOADER module (part of NTLDR)
when it gets loaded from disk.

6. The patched OSLOADER calls the Kernel Patcher
shellcode in memory (sector 60).

7. This shellcode scans and patches the NTOSKRNL.EXE
image near ‘CALL nt!IoInitSystem’.

8. The modifi ed NTOSKRNL.EXE calls the Payload
Loader shellcode (sector 61) which loads and runs the
rootkit driver stored in the last sector of the disk.

To minimize footprints and traces in memory, the loader
shellcode takes care of deleting itself by fi lling up with zeroes
the memory area where it is stored. This detail leads us to
believe that nothing is left to chance and the authors of this
nasty piece of code are skilled and meticulous malware
programmers.

Analysing the fi nal rootkit driver loaded in memory requires
some extra effort. Some rootkit variants in fact have an extra

packing layer that unpacks the real kernel driver using
scrambled spaghetti code. Also in this case, a good breakpoint
on ExAllocatePoolWithTag will do the job and let us dump the
fi nal unpacked driver. Since the rootkit SYS driver is loaded by
its own loader in an unusual way, the module does not expect
the normal parameters passed to Windows drivers. In fact, it
receives three parameters passed by the Payload Loader: the
kernel ImageBase of the unpacked driver, a pointer to
PsLoadedModuleList (used to resolve imports) and the
ImageBase of the packed driver. The rootkit takes care of
resolving all NTOSKRNL and HAL imports with its own
routine and also deletes from memory the packed driver image
when it is no longer needed. Later on, even the MZ header of
the unpacked driver is deleted from memory to minimize
footprints, leaving in the kernel space only random traces of
code in executable memory pages.

DISK STEALTH TECHNIQUE OF THE FIRST
VERSION
The fi rst variant of Mebroot hides itself by hooking the disk.sys
driver. It fi nds DeviceObject for \Device\HardDisk[N]\DR0
and reads the old MBR from Sector 62 into an allocated pool
that will be used as ‘cached copy’ of the old MBR to improve
the performance of stealth operations. Since the rootkit does
not have fi les, process or registry keys to hide, the stealth
functionalities are limited to intercepting read/write
operations on raw disk sectors. This is done by hooking the
dispatch handlers of \Driver\Disk for IRP_MJ_READ and

IRP_MJ_WRITE routines. When a
program tries to read the MBR
(sector 00) or any other sector used
by the rootkit (60, 61, 62 or sectors
after the end of the disk) the
hooked code will return a fake
image of the sector, showing the
old MBR or eventually an empty
sector fi lled up with zeroes for the
other cases. In a similar way, the
rootkit will protect itself by
blocking all write operations to its
sectors. The rootkit needs to
maintain a hook-free version of
the IRP_MJ_READ and
IRP_MJ_WRITE functions and so
it uses a special trick: it generates a
random DWORD value used as a
‘magic key’. Later, the rootkit is
able to perform normal read/write
operations with the original
dispatch routines simply by calling
the disk.sys driver with an IRP
packet that contains this magic key
at offset 0x40.

STEALTH TECHNIQUE
ENHANCEMENTS
In March 2008 the response from
AV companies to this new Figure 7: Two hooked pointers in the DISK.SYS dispatch table are suspicious enough.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

7VIRUS BULLETIN CONFERENCE OCTOBER 2008

challenge was already available to users. AV programs and free
stand-alone tools were able to detect and remove active Mebroot
infections from computers. The criminal master plan was
obviously compromised and so the Mebroot authors decided to
take a further step and improved the stealth abilities of their
creature. Many of the new features that were introduced in the
second rootkit variant are discussed in [9].

The fi rst variant of Mebroot targeted only IRP_MJ_READ and
IRP_MJ_WRITE function pointers in the MajorFunction table
of DISK.SYS. The weaknesses of this hooking technique were
immediately visible to AV researchers and different approaches
to detect compromised kernels were introduced:

(A) Anomalies between addresses and module ranges of
IRP_MJ_* pointers in the DISK.SYS MajorFunction
table (see Figure 7).

(B) Discrepancies between the IRP_MJ_READ/
IRP_MJ_WRITE pointers used by DISK.SYS and by
CDROM.SYS.

(C) Discrepancies between the IRP_MJ_READ/
IRP_MJ_WRITE pointers used by DISK.SYS and
values initialized by the CLASSPNP.SYS routine
ClassInitialize().

Mebroot’s authors reversed the code of many removal and
detection programs and in March 2008 they released into the
wild a variant that was able to overcome (A), (B) and (C). The
irregularities in (A) have been fi xed by the authors by adding
dummy pointers for all IRP_MJ_* functions of DISK.SYS.
Instead of hooking only two pointers, the rootkit now hooks all
the pointers in the MajorFunction table. The pointers of
IRP_MJ_READ/WRITE are redirected to the rootkit routine
handler, while all the other pointers (still in the same module)
are hooked with a dummy handler which jumps back to the

original DISK.SYS handler for each of them. A similar
approach was used to fi x the discrepancies in (B). In fact, the
rootkit now hooks the CDROM.SYS dispatch table with dummy
pointers with a replica of the DISK.SYS pointers. Finally, to
avoid restoration of the original pointers from the CLASSPNP.
SYS driver, the gang added an extra routine (shown in Figure 8)
which scans code sections of the CLASSPNP driver in memory
and patches the original pointers of the ClassInitialize() routine
with rootkit hooked pointers.

In the middle of March we found an improved variant that
introduced a ‘watchdog’ thread active in memory. Any attempt
by AV or removal tools to restore the original read/write IRP
pointers is monitored by the watchdog thread which
immediately restores the rootkit pointers and reinfects the MBR
and disk sectors. This implementation has some known bugs
explained in [9] but it was effective enough to make removal a
complicated job. In later variants some of these known bugs
have been fi xed.

At the beginning of June we found a new Mebroot variant that
modifi es the watchdog thread’s _ETHREAD->StartAddress
structure member and makes it point to an existing benign
system thread start address. This was probably done to prevent
AV or removal tools from being able to fi nd the watchdog thread
by enumerating system threads and looking to see whether their
start addresses pointed outside of trusted module address space.

Other attempts to evade detection in the MBR were also found
in the MBR loader code which may contain a random amount of
NOP opcodes interleaved between instructions to evade static
string signatures.

FIREWALL-BYPASSING TECHNIQUES
Analysing the rootkit driver’s network code is one step harder.

The majority of its
functions are still
heavily obfuscated,
even after successful
unpacking. The fastest
way to get past the
obfuscation is code
tracing and custom
scripts to clean up the
trace logs of extra
garbage. After lots of
frustrating moments
and some
breakthroughs we now
know that Mebroot’s
fi rewall-bypassing
technique is taken one
step further than that
which we described in
our article about Srizbi
[10].

Mebroot also operates
in the NDIS layer but
it uses a different
approach to gain Figure 8: Mebroot’s dedicated patch routine for CLASSPNP.SYS pointers.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

8 VIRUS BULLETIN CONFERENCE OCTOBER 2008

access to the internal NDIS structures. Whereas Srizbi installed
a dummy protocol, Mebroot uses the unexported
ndisMiniDriverList global which points to the head of a linked
list consisting of installed minidriver objects. These objects are
described by the _NDIS_M_DRIVER_BLOCK structure which
is shown below:
NDIS!_NDIS_M_DRIVER_BLOCK

 +0x000 NextDriver : 0x81b04290 _NDIS_M_DRIVER_BLOCK

 +0x004 MiniportQueue : 0x81a61828 _NDIS_MINIPORT_BLOCK

 …

The MiniportQueue structure member points to miniport block
objects bound to the specifi c driver. By traversing through the
ndisMiniDriverList linked list Mebroot has access to all
miniports and from there onwards it uses a similar approach to
Srizbi to fi nd a suitable adapter that is bound to either the
PSCHED or TCP/IP protocol. Before Mebroot accesses the
linked list it gets exclusive access to it by acquiring the
ndisMiniDriverListLock spinlock which is also unexported.
This is a good example of the level of professionalism the
Mebroot authors are practising since accessing any linked list
without exclusive access will pose a risk of system crash if any
of the link pointers are modifi ed simultaneously.

Finally, after Mebroot has found a suitable protocol to hijack, it
fi nds the address of the lowest level send handler function and
hooks three NDIS handler functions.

To send packets it uses the following handler function:
NDIS!_NDIS_M_DRIVER_BLOCK

 +0x020 MiniportCharacteristics : _NDIS51_MINIPORT_
CHARACTERISTICS

 +0x040 SendPacketsHandler : 0xf9adf332 void pcntpci5
!LanceSendPackets+0

To get a notifi cation after the send operation has completed it
uses the following hook:
NDIS!_NDIS_MINIPORT_BLOCK

 +0x0ec SendCompleteHandler : 0x81825bb0 void mbr_
rootkit!Hook_SndCompHdlr

To receive packets it uses the following hooks:

NDIS!_NDIS_OPEN_BLOCK

 +0x040 ReceiveHandler : 0x8182cd10 int mbr_
rootkit!Hook_RcvHdlr

 +0x050 ReceivePacketHandler : 0x8182e400 int mbr_
rootkit!Hook_RcvPcktHdlr

Mebroot’s network code is advanced in many ways. It is
powerful – we are not aware of a single fi rewall product that
intercepts calls at the minidriver level which Mebroot uses to
send outbound packets. Therefore it is no surprise that all
personal fi rewall products we were able to test were fully
bypassed. It is stealthy – only a single pointer is hooked at all
times. The rest of the hooks in the selected protocol’s
_NDIS_OPEN_BLOCK structure are only in use when the
rootkit is sending packets. It accomplishes this by creating a
copy of the original open block structure which is then hooked.
When it needs to send a packet it replaces a single pointer from
the _X_BINDING_INFO structure to point to its private open
block structure to make sure the received packets from that
point onwards will be processed by its own handler functions.
After the packets have been processed the original pointer is put
back. This process is illustrated in Figure 9.

Another example of Mebroot’s stealth is the way it ensures that
all the NDIS API functions it relies on are not hooked by
fi rewalls. Instead of just copying the original ndis.sys from disk
into allocated memory and using it as its private module as
Srizbi did it uses a ‘code pullout’ technique to load only the
relevant parts of the code into memory. This technique was fi rst
described by Alexander Tereshkin, a.k.a. 90210 at rootkit.com
[11]. After all relevant code blocks are copied into one
continuous block of memory Mebroot relinks all relative call
and branch instructions, fi xes all relocations to point to the
original NDIS module and fi nally patches its own import
address table to make sure all imported NDIS API functions
point to the code that was pulled out. This makes runtime
analysis and forensics more challenging as it is diffi cult to
locate the relevant NDIS code used by Mebroot since it is just a
bunch of bytes somewhere in an allocated non-paged pool.

ACCESSING
UNEXPORTED
SYMBOLS

In the previous section we
described briefl y how
Mebroot uses two unexported
globals from the NDIS
module, namely
NdisMiniDriverList and
NdisMiniDriverListLock, to
get access to all required
low-level NDIS structures.
Since these symbols are not
exported it poses a challenge
to the code to fi nd their
correct memory addresses in
a generic way that is not
dependent on the operating
system version. The most Figure 9: Mebroot activates the full set of its hooks only when it needs them.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

9VIRUS BULLETIN CONFERENCE OCTOBER 2008

common approach so far used by
malware has been to scan the module
for a specifi c signature to locate the
part of the code where the symbol is
used. For example, Rustock scanned
0x1000 bytes from NDIS!
NdisMRegisterMiniport onwards and
looked for a hardcoded four-byte
signature to fi nd the addresses of NdisMiniDriverList and
NdisMiniDriverListLock. This approach worked most of the
time but in our tests we did encounter blue screens on some
systems depending on their batch level which were caused by
the malware code when it passed an invalid spinlock pointer to
the KfAcquireSpinLock call. As a side note – Rustock was the
fi rst malware to utilize this list for enumerating installed
minidrivers and miniport blocks bound to them.

To overcome this obvious limitation and to minimize the risk
of system crashes Mebroot uses a more sophisticated technique
to fi nd the addresses for these two unexported globals. Instead
of using simple byte signatures to locate the right place
Mebroot analyses the code structure of the exported
NdisMRegisterMiniport function which has references to
both NdisMiniDriverListLock and NdisMiniDriverList as we
can see from Figure 10.

Once more, Mebroot’s authors have reused existing code from
Tereshkin’s PHIDE2 proof-of-concept program. We were able
to fi nd clear evidence that some of Mebroot’s obfuscated
functions were one-to-one with functions implemented in
PHIDE2’s pullout.c and search.c. Mebroot uses PHIDE2’s code
coverage algorithm to fi nd all code blocks belonging to the
NdisMRegisterMiniport function and its subfunctions and then
analyses these blocks to locate the static pointers that represent
these two unexported globals. The exact algorithm is
represented below.

How Mebroot fi nds the address of unexported
NdisMiniDriverListLock:

1. Finds all globals used by NdisMRegisterMiniport by
calling FindSharedGlobals().

2. For every global, enumerates ndis.sys relocations by
calling ParseRelocs() and checks whether the relocation
target value equals the current global.

3. If match, checks whether the preceding instruction is
‘MOV ECX, IMM32’.

4. If true, checks whether the next instruction is ‘CALL
m32’.

5. If true, checks whether ‘m32’ equals one of four spinlock
API functions1.

6. If true, current global is NdisMiniDriverListLock.

In our test systems the algorithm found the list lock address
from inside the NdisEnumerateInterfaces function as can be
shown from the following kernel debugger printouts:

1 KfAcquireSpinLock, KfReleaseSpinLock,
KefAcquireSpinLockAtDpcLevel or KefReleaseSpinLockFromDpcLevel.

kd> u 8c3d+ecx-1

e1c08c3c b96c6b0100 mov ecx,16B6Ch

e1c08c41 ff15545e0100 call dword ptr ds:[15E54h]

kd> u 8c3d+ndis-1

NDIS!ndisEnumerateInterfaces+0x172:

f96ffc3c b96cdb6ff9 mov ecx,offset NDIS!ndisM
iniDriverListLock (f96fdb6c)

f96ffc41 ff1554ce6ff9 call dword ptr [NDIS!_imp_
KfReleaseSpinLock (f96fce54)]

How Mebroot fi nds the address of unexported
NdisMiniDriverList:

1. Acquires NdisMiniDriverListLock spinlock.

2. For every global, enumerates ndis.sys sections and checks
whether the global is located within a section that has the
following fl ags enabled:

 a. IMAGE_SCN_MEM_NOT_PAGED

 b. IMAGE_SCN_MEM_READ

 c. IMAGE_SCN_MEM_WRITE

3. If true, reads DWORD from the current global. This is
assumed to point to the _NDIS_M_DRIVER_BLOCK
structure.

4. Checks pointer validity with MmIsAddressValid and
MmIsNonPagedSystemAddressValid.

5. If valid, traverses all _NDIS_M_DRIVER_BLOCK-
>NextDriver pointers and validates them (step 4) until
NULL or invalid pointer is reached.

6. If pointer count > 2, reads DWORD from
_NDIS_M_DRIVER_BLOCK->MiniportQueue. This
points to the _NDIS_MINIPORT_BLOCK structure.

7. Traverses all _NDIS_MINIPORT_BLOCK-
>NextMiniport pointers and validates them (step 4) until
NULL or invalid pointer is reached.

8. If pointer count > 0, releases the spinlock and the global
is NdisMiniDriverList.

These two algorithms are much more system independent than
basic signature-based ones. A clear indication that this approach
works is that during our tests with different patch and service
pack levels we did not encounter a single system crash. It seems
that kernel-mode malware has found one more reliable trick to
add to its toolbox which allows it almost unlimited access to the
non-documented and unexported kernel internals.

BACKDOOR COMMUNICATION AND
ENCRYPTION
We tried to study and analyse some infected Mebroot machines in
our labs to understand the communication protocol with the C&C

Figure 10: Both unexported globals are used by NdisRegisterMiniportDriver which is called by
the exported NdisMRegisterMiniport function.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

10 VIRUS BULLETIN CONFERENCE OCTOBER 2008

server (the ‘mothership’ server). The Mebroot driver contains
some hardcoded hostnames that are used in the code as a fi rst
point of contact during network activity. If these hosts are offl ine,
Mebroot is able to generate a pseudo-random hostname using the
template ‘%c%c%c%c%s’. This hostname is based on the current
date/month and contains a three-char suffi x (%s) which is chosen
from a list of known hardcoded strings (e.g. anj, ebf, arm, pra,
aym, unj, ulj, uag, esp, kot, onv, edc). This list may change from
variant to variant. The fi nal domain suffi x is chosen using ‘.com’,
‘.net’ and ‘.biz’ combinations. Earlier variants of Mebroot seem to
get the current date using OS functions, but we recently spotted a
variant that possibly tries to get the current date by parsing HTTP
headers from a GET request to multiple ‘google.*’ servers. The
date prediction algorithm is very similar to the one used by
Trojan.Anserin years ago. More information about this algorithm
is discussed in [12].

When a generated hostname resolves via DNS to a valid IP
address, Mebroot sends an initial encrypted packet to the C&C
server using the HTTP protocol. All network traffi c is sent
through the private TCP/IP stack and therefore is virtually
invisible to any application running on the infected host. An
example of plaintext and an encrypted packet are shown in
Figure 11.

The size of the initial encrypted packet sent out has an
encrypted size of 92 bytes (0x5C). The fi rst DWORD in the
packet is always the decryption key and the second DWORD
gets decrypted to the real size of the cleartext payload. The
reply packet has to contain the same key as the fi rst DWORD
otherwise the packed will be discarded. The initial packet
contains the magic command ‘BIP’, which is probably used to
ping the C&C server. This magic command is followed by other
values as explained in the packet structure reconstruction shown
in Table 2.

The encryption algorithm used is unknown and protected from
immediate reversing by the crazy obfuscation layer present in
the rootkit code. However, it is possible to fi nd in the encryption
and decryption routines the magic constants of the SHA-1
hashing algorithm. The initial packet shown in Figure 11 is used
to communicate to the C&C server the secondary encryption
key which the downloaded user-mode payloads can use for
further communications with the server. The secondary key is

usually eight bytes long and generated with a complex hashing
routine based on individual characteristics of the hard drive and
two magic values 0xBAD1D111 and 0xBAD1D222. The
secondary key is used with the old ‘Torpig-style’ encryption
algorithm which is much simpler (xor + base64 encoding). This
second algorithm/key combination is responsible for all
bank-stealing communications and activities performed later by
the downloaded DLL modules.

DLL Encrypted Text:
‘cEJmlWUXX1TUjnRv/+7ldPVnJ2Uhwqu1Z7t2W7osElZnVXaVBNfe
VAXeVP5vH6Lh1XcnRUEiG9RQ2hHrDs5UcQBiBpUFZs4xxVpxOxp75
XUUt0JxIOJLBVDaIXsq2rVRIKNm1VGSP6AhO5EPfg’

DLL Decrypted Text:
“ts=0&ip=192.168.146.137:&sport=4203&hport=4234&os=
5.1.2600&cn=Ireland&nid=3AEFBA86C8B89862&bld=mlucky&
ver=204”

Table 3: Example of secondary encryption used by Mebroot
DLL modules.

During our tests we have seen Mebroot responding to the initial
‘BIP’ packet with a big encrypted blob of data of about 230 KB.
So far, this packet has always contained encrypted images of
two DLL modules and instructions to inject them into carefully
selected processes running on the infected system. Figure 12
shows the contents of the reply packet after decryption.

From Figure 12 we can easily see
what is going on – the infected
client is instructed to install two
separate user-mode payloads. The
fi rst DLL will be injected into
‘services.exe’ and the second will
be injected into multiple processes
if they exist on the system. During
our tests we did not see any
commands other than ‘INST’ from
those servers that we were
monitoring. However, based on
static code analysis we can
conclude with some certainty that
Mebroot contains the following
backdoor capabilities:Figure 11: Example of plaintext and encrypted packet sent by Mebroot.

OFFSET SIZE NOTE

0x00 DWORD “BIP\x01”

0x04 DWORD sizeof(full packet)

0x08 DWORD “INFO”

0x0C DWORD sizeof(Secondary Key)+sizeof(client-
id)+4

0x10 8-bytes Secondary Key for user-mode encryption

0x18 DWORD sizeof(client-id)

0x1C DWORD client-id string (e.g. “dxtr”, “grey”,)

0x20 DWORD “PLUG”

0x24 DWORD sizeof(version-id) + 8

0x28 DWORD version-id? (e.g. 0x00000001)

0x2C DWORD “MAOS”

0x30 DWORD unknown?

Table 2: Possible structure of Mebroot initial packet.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

11VIRUS BULLETIN CONFERENCE OCTOBER 2008

1. Install user-mode DLL into any process or install new
version of Mebroot into raw sectors.

2. Uninstall user-mode DLL or uninstall Mebroot from raw
sectors.

3. Instruct a trusted process to launch new process by
fi lename.

4. Execute any driver in kernel mode.

What makes Mebroot’s backdoor extremely powerful is the fact
that the payloads are never stored on disk in cleartext (except for
process creation) which means that only memory-based AV
scanners are able to detect the downloaded payloads by
signature. To understand better how the main payload installation
is done we will look in more detail at what will happen when an
infected client receives the ‘INST’ command from the server.

Figure 12: Reply packet from Mebroot C&C server after decryption.

Figure 13: Downloaded payload is stored on disk in an encrypted fi le.

The installation routine will fi rst enumerate all fi les under the
‘system32’ directory and select a random fi le from it. It removes
unnecessary headers from the decrypted packet and encrypts it
again using the same algorithm that is used for the network
traffi c. The new encrypted payload is stored in a new fi le under
the ‘system32’ directory whose name equals the previously
selected benign fi le with the fi le extension changed to a random
one. Also, the fi le properties, such as creation and modifi cation
time, are changed to match the benign fi le. This behaviour is
illustrated in Figure 13 where the payload is stored in a fi le
named ‘qdv.jsx’ and both its encrypted and cleartext contents are
shown.

Once the payload is successfully stored on disk the fi rst stage of
the installation process is completed. After this point the
payload can be read from the fi le, decrypted in memory and

reloaded after reboot even if the
C&C server goes offl ine.

The next phase is to execute the
payload. As we have mentioned the
payload has so far contained two
DLLs that will be injected into
selected processes. In fact we can
see from Figure 13 that the stored
payload contains the target process
name (‘services.exe’) and the size of
the PE fi le right before the ‘MZ’
header. The second DLL, its size and
list of target processes will follow
right after this block. To load the
DLL into the target process(es) the
code executes the following steps:

1. Finds target process object and
changes into its context by
executing
KeStackAttachProcess.

2. Calls NtAllocateVirtualMemory
to allocate RWX memory from
user mode for custom DLL
loader module and the actual
DLL.

3. Prepares the loader module and
the DLL for execution by
copying them into the allocated
buffers and by relocating them
to their new base addresses.

4. Finds an alertable thread and
queues a user-mode APC that
will execute the entry point of
the loader module.

5. Waits for an event from the
loader module to indicate that it
has fi nished its job.

The loader module, which is a DLL
itself, will fi rst resolve its own
imports and then destroy its PE
headers to maintain stealth. Next it

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

12 VIRUS BULLETIN CONFERENCE OCTOBER 2008

will resolve the imports for the
injected DLL and call its entry point.
Finally it calls SetEvent to signal to
the driver that the payload has been
loaded.

The interesting fi nding is that the
Mebroot driver provides 21 (0x15)
kernel-mode routines that the injected
DLLs can utilize through a shared
memory buffer and signalling event.
We also found another reference to
the routine array from code that uses
an array of 21 three-letter strings as
the selector. This routine is part of the
backdoor’s kernel-mode payload
handler and would indicate that the
server can instruct the client to
execute any of these routines. The
following are some example strings:

• ‘the’, ‘mat’, ‘rix’, ‘has’, ‘you’, ‘neo’

The purpose of each ‘system call’ routine is still a little unclear
but we have been able to confi rm that several of them are related
to the driver’s private TCP/IP stack and at least the fi rst DLL
uses it to communicate with the C&C server and therefore can
effectively bypass any personal fi rewall or network-monitoring
software running on the infected host. One example of the
private system call interface is illustrated in Figure 14.

Based on the analysis we have done so far it is clear to us that
Mebroot’s backdoor capabilities are powerful – the most
powerful we have seen so far. It is capable of pushing any DLL
into infected clients and the DLL can be modifi ed to utilize the
private system call interface with minimal changes, thus
allowing it to take full advantage of the services provided by the
Mebroot driver. In addition to this, the backdoor can upload and
execute any kernel-mode module it wants on the client.

Now that we have been able to get a slightly bigger picture of
this monstrous beast we have started to wonder what this
mysterious ‘MAOS’ string means, which is clearly some kind of
signature from the authors. Based on what we have seen so far
we are starting to think that it could mean ‘Malware Operating
System’ – an evil operating system running inside the real one!

The positive side is that Mebroot seems to have an
uninstallation routine that the C&C server can instruct the
infected clients to execute. Since the key exchange protocol
between the client and the server is weak we have been able to
break the encryption and could theoretically hijack the botnet
and instruct every infected client to clean themselves. However,
since this approach might have some legal implications we have
so far used this weakness just to decrypt the C&C traffi c from
network captures to understand Mebroot’s inner workings in
more detail.

CONCLUSIONS

Mebroot is the most advanced and stealthiest malware we have
analysed so far. It operates in the lowest levels of the operating
system, uses many undocumented tricks and relies heavily on

unexported functions and global variables. Still we did not
encounter a single blue screen with the latest samples that were
distributed after February 2008. This is a clear sign of the level
of professionalism the malware authors are practising today. It
is also evident that the authors of Mebroot are closely following
the research done by individuals often presenting their fi ndings
at Black Hat conferences or on rootkit.com. Mebroot’s MBR
code is almost identical to Bootroot’s, while the
fi rewall-bypassing code closely follows the most advanced ideas
presented by Tereshkin at Black Hat USA 2006 [13]. In
addition, after we successfully unobfuscated some of the code
used to perform the code pullout it became clear that some of
the functions were one-to-one with functions that are part of the
PHIDE2 source code. Maybe the next malware from Mebroot’s
author will be utilizing virtualization to make it even more
diffi cult to detect and remove – at least proof of concept source
code for this is already available [14].

REFERENCES
[1] Master Boot Record timeline.

http://isc.sans.org/diary.html?storyid=3820.

[2] GMER team. Stealth MBR rootkit (2 Jan 2008).
http://www2.gmer.net/mbr/.

[3] The Flow of MBR Rootkit Trojan Resumes.
http://www.symantec.com/enterprise/security_
response/weblog/2008/02/the_fl ow_of_mbr_rootkit_
trojan.html.

[4] Hoglund, G.; McGraw, G. Exploiting Software. 2004.
p.429.

[5] eEye BootRoot. http://research.eeye.com/html/tools/
RT20060801-7.html.

[6] BOOT KIT: Custom boot sector based Windows 2000/
XP/Vista subversion. http://www.nvlabs.in/?q=node/11 .

[7] INFO: Direct Drive Access Under Win32, Microsoft.
http://support.microsoft.com/kb/q100027.

[8] Rutkowska, J. Subverting Vista kernel for fun and
profi t. 2006.

Figure 14: Downloaded DLL requests the driver to send the POST request on its behalf.

YOUR COMPUTER IS NOW STONED (...AGAIN!) KASSLIN, FLORIO

13VIRUS BULLETIN CONFERENCE OCTOBER 2008

http://www.invisiblethings.org/papers/
joanna%20rutkowska%20-%20subverting%20vista%2
0kernel.ppt.

[9] Kapoor, A.; Mathur, R. Strike me down, and I shall
become more powerful! Virus Bulletin. June 2008.
pp.8–10. http://www.virusbtn.com/virusbulletin/
archive/2008/06/vb200806-strike-me-down.

[10] Kasslin, K.; Florio, E. Spam from the kernel. Virus
Bulletin, November 2007, pp.5–9. http://www.virusbtn.
com/virusbulletin/archive/2007/11/vb200711-srizbi.

[11] Phide2. http://rootkit.com/vault/90210/phide2.zip.

[12] Ligh, M.H. MBR rootkit domain name prediction
algorithm. http://mnin.blogspot.com/2008/01/
mbr-rootkit-domain-name-prediction.html.

[13] Tereshkin, A. Rootkits: attacking personal fi rewalls.
Black Hat USA 2006. http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Tereshkin.pdf.

[14] Blue Pill Project, http://bluepillproject.org/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

