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ABSTRACT
Rootkits are designed to hide information. They are no longer
utilized only by highly skilled individuals targeting UNIX
machines. Advanced Windows rootkits have emerged and are
gaining popularity among intruders. The alarming news is
that malware writers are adopting rootkit techniques, which
allows them to create a new breed of worms, Trojans and
spyware that are able to avoid detection by hiding their
presence on the system.

Traditional anti-virus and intrusion detection systems are
powerless against this emerging threat, since they rely on the
validity of the information provided by the operating system.
This information cannot be trusted if the kernel or the
application programming interfaces are modified by malware.

This paper is a continuation of the academic research done by
one of the authors [1]. It provides an introduction to the hiding
techniques utilized by advanced Windows rootkits. This
information is essential for understanding the threat and for
fighting it. In addition, new techniques for detecting hidden
objects are presented. They form the foundation for the next
generation of detection tools. Finally, the paper presents and
analyses a new application that brings rootkit detection onto
the desktop of home users.

1. INTRODUCTION
Stealth viruses have been around for almost two decades now.
Their era on Microsoft systems seemed to end with the
introduction of Windows 95, but after a dormant period they
are now back in the form of Windows rootkits.

Brain [2], the first PC virus from 1986, was also the first
stealth virus. It installed hooks on disk interrupt handling in
order to hide its existence. When an attempt was made to read
an infected boot sector, the virus would return the original boot
sector instead.

Stealth viruses almost died out completely when 32-bit
Windows became the dominant operating system. There are
probably several reasons for this, but the most important is that
Windows users do not remember the sizes of system files [3].
Virus writers concentrated their efforts on other technologies
and stealth was forgotten. Well, almost forgotten.

Cabanas [4] from 1997 is renowned because it was the first
real Windows NT-compatible virus.  Cabanas was a
semi-stealth virus that hid the change in size of infected files
by hooking FindFirstFile and FindNextFile API functions in

the Import Address Table (IAT). In this sense Cabanas was the
forefather of today’s Windows rootkits that commonly hook
these same functions.

Today, parasitic viruses – malware that infect other files – are
less and less common. The most common form of malware is a
stand-alone application. These come in various flavors:
worms, Trojans, bots, etc. Stealth in this context means that a
malicious application is able to hide itself from system
monitoring tools and even anti-virus scanners. When we talk
about stealth in malware today, we are talking about rootkit
techniques.

Current Windows rootkits generally hide at least one of the
following object types: processes, files and registry keys. In
our experience, processes are currently the most common
object type that rootkits hide. This is a little surprising since, in
theory, a rootkit does not need user-mode processes. The
reasons for the current situation are most likely the following:

• Windows has a huge number of files under system
directories. No user knows them all. On the other hand, a
typical Windows machine only has around 50 processes.
System administrators are likely to notice strange new
processes on their system.

• Rootkits are commonly used to hide spyware, bots,
FTP-servers, etc. A rootkit that cannot hide other
applications from the task manager is not very useful for
real-life attackers.

• Many security applications rely on the integrity of the
process list. These applications might not be able to
detect malicious activities of hidden processes. For
example, some anti-virus products have memory scanning
functionality that is not able to scan hidden processes.

In this paper we will present some of the hiding techniques
used by Windows rootkits. In particular, we concentrate on
techniques that are used to hide malware from anti-virus
software. We will also introduce a generic approach to
detecting rootkits. Specifically, we will demonstrate its
applicability in detecting hidden files and processes. For
hidden registry key detection, the reader is advised to refer to
the recently published paper by Wang et al. [5]. When
Windows operating systems are discussed in this paper, we
are referring to 32-bit versions of Windows 2000, XP and
Server 2003.

This paper is not about preventing the operation of rootkits.
Rootkits can be fought effectively with behaviour blocking
software, but this is out of the scope of this paper. Incidentally,
most of the basic technologies, such as API hooking, used by
these behaviour blockers are the same technologies that
rootkits use to hide themselves.

2. HIDING TECHNIQUES

2.1. General idea

Stealth malware tries to hide its presence from users of the
infected computer. It does this by hiding any processes,
threads, files, registry entries, handles and open ports it has on
the system. This usually means that malware has to intercept
requests of system information sent by administration and
security tools.

Normally, the request for information originates from a
user-mode application. It sends the request by calling the
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appropriate Windows API function. Later, the request is
handled by the kernel, which collects the information from
various data structures it maintains. Eventually, the requested
information is sent back via the same route it came. This route
is known as the execution path.

Stealth malware is able to hide information if it can divert the
execution path to go through a special filter function. This is
also known as hooking. The sole purpose of the function is to
filter out the hidden information from data going through it.
Depending on the situation, it can modify the data either
before or after the request has been handled.

Filtering can be performed in user mode or in kernel mode.
Generally, user-mode filtering is done by hooking the
corresponding Windows or Native API functions that are
responsible for retrieving the requested information.
User-mode filtering is easier to implement because Windows
API provides various documented functions that allow a
malicious process to install its hooks on any process in the
system. The biggest disadvantage of user-mode filtering is
that usually a malicious process has to install its hooks on
every process to create a system-wide filter. This is because
each process has its own private memory space [6].

Kernel-mode filtering filters the information while the thread
is executing in kernel mode. Since every process shares the
same system address space [6], system-wide filtering can be
achieved by installing only a single set of hooks. However,
kernel-mode filtering is more demanding since less
documentation is available and a single error can cause the
whole system to crash.

2.2. Places to hook

Hooking and similar techniques have been used for decades
by experienced system developers for program tracing and
code instrumentation purposes. In Windows environments,
there are several techniques that can be used to hook binary
code. Below is a list of the most widely used techniques:

• Inline hooking

• System Service Table (SST) hooking

• Import Address Table (IAT) hooking

• Export Address Table (EAT) hooking

• Interrupt Descriptor Table (IDT) hooking

• I/O Request Packet (IRP) major function hooking

• Filter drivers

These techniques are quite well documented but the
information is scattered around. There are, however, two
academic papers [1, 7] that have collected most of the
necessary information together. It is not possible to explain all
these techniques in the context of this paper. Only the two
most common techniques, inline hooking and SST hooking,
are briefly introduced. The reader is advised to refer to the
mentioned papers for more information.

2.2.1. Inline hooking

Inline hooking is the most widely used technique for
intercepting function calls. It has mostly been used for
user-mode hooking but it works with kernel-mode function
calls as well. Inline hooking is based on patching in-memory
functions to divert their execution path to a location
controlled by the hooking entity. It is a powerful technique
because it can intercept every function call, regardless of the
way it is called. Currently, the most widely used technique
is known as the Detours technique, which was presented by
Hunt and Brubacher [8]. Their solution was special because
it was the first one that preserved the logic of the original
function.

The generic idea is illustrated in Figure 1. The first few
instructions of the target function are replaced with a JMP
instruction pointing to the user-supplied detour function. The
replaced instructions are preserved in a trampoline function.
The trampoline consists of the instructions removed from the
target function and a JMP instruction pointing to the
remainder of the target function. When execution reaches the
target function, control jumps directly to the user-supplied
detour function [8].

The detour function consists of three separate sections: the
prolog part, the call to the trampoline function and the epilog
part. First, the prolog part performs whatever preprocessing is
appropriate. Then, the trampoline function is invoked with the
CALL instruction. This allows the detour function to regain
control after the trampoline function returns. The trampoline
function runs the unpatched version of the target function.
Finally, the epilog part performs appropriate post processing
and returns control to the source function [8].

Inline hooking has been widely adopted by recent stealth
malware as can be seen from Table 1. For example, the
Haxdoor.al [9] backdoor hooks functions in several system
DLLs that allow it to hook other DLLs, hide open ports and
filter HTTP traffic. An interesting observation is that,
currently, inline hooking is done only in user mode. The most

Hides

Files Processes Reg. Keys Injection Method Hooking Method

Backdoor.Win32.Lecna.a [7] Yes Yes Yes KM Driver SST

Backdoor.Win32.Padodor.w [11] No Yes No Physical Memory UM Inline

Trojan-Spy.Win32.Qukart.w [11] Yes Yes No Physical Memory UM Inline

Backdoor.Win32.Hupigon.j [24] Yes Yes No KM Driver UM Inline

Backdoor.Win32.Haxdoor.al [8] Yes Yes No KM Driver SST + UM Inline

Worm.Win32.Myfip.h [10] No Yes No Physical Memory DKOM

Net-Worm.Win32.Maslan.a [9] Yes Yes No UM DLL IAT

Table 1. Some examples of recent stealth malware and their properties.
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likely explanation is that kernel-mode inline hooking is not
that well documented. Another explanation is that it has not
been necessary – the other techniques have been effective
enough. This might change in the future.

2.2.2. System Service Table hooking

System Service Table (SST) hooking is a powerful and widely
adopted kernel-mode technique that can be used to intercept
system service calls made by user-mode applications or even
some kernel-mode modules. A system service call is a
mechanism provided by the kernel that allows user-mode
code to use its services in a controlled manner [6]. For
example, whenever a user-mode application needs access to
files, registry or process objects, it calls the appropriate
Windows API call, which eventually generates a system
service call that is then handled by the kernel. The concept of
SST hooking was presented by Russinovich and Cogswell [10].

The idea of SST hooking is illustrated in Figure 2. The SST is
a table of pointers where each entry contains the address of
the internal kernel function that implements the
corresponding service. If an entry in the table is replaced with
one that points to code controlled by the hooking entity, it can

intercept every call to the specific system
service. The structure of the hook
function is similar to the detour function
described in the previous section. The
only difference is that the hook function
calls the original function instead of the
trampoline function. This is because
the original function was not modified in
any way.

From the recent stealth malware, Lecna.a
[11] and Haxdoor.al [9] use SST hooks for
system-wide filtering. The installed hooks
are used to hide certain files, processes and
registry keys (see Table 1). Some of the
hooks installed by Haxdoor.al backdoor
are quite powerful. For example, if an
untrusted process tries to terminate a
hidden process protected by the hooks, the
untrusted process will be terminated
instead. In addition, the hooks enforce
user-mode hook installation into every
process created.

2.3. Hook installation

There are several different techniques for installing hooks on
Windows platforms – some are well known and commonly
used, whereas some are quite rare. User-mode and kernel-
mode hooking requires different techniques for installation.

In order to hook a process in user mode, a rootkit usually has
to inject its hook function code into its target process and then
install the hooks. In the most common case this is
accomplished by loading a Dynamic-Link Library (DLL) into
the target process memory space. After the DLL has been
loaded, hooks can be installed e.g. by running the entry point
function of the DLL. See [1] for a thorough explanation on
different Windows injection methods.

Some common user-mode code injection methods are:

• WriteProcessMemory API function

• SetWindowsHookEx API function

• AppInit_DLLs registry value

Code execution within another process can be accomplished
with:

• CreateRemoteThread API function

•  DLL entry point function
(SetWindowsHookEx, AppInit_DLLs)

•  SetThreadContext API function

As well as writing the hook function code
into the target process,
WriteProcessMemory can also be used for
placing the hooks directly without having
to execute anything within the target.
This method has also been used by
Haxdoor.al [9] and Hupigon.j for injecting
user-mode hooks directly from kernel
with the ZwWriteVirtualMemory system
service call.

Injection methods that write code into the
target process memory with

Figure 1: API function call before and after inline hooking. (Source: [8], modified by
the authors.)

Figure 2: System Service Table before and after SST hooking.
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WriteProcessMemory hook only that single process.
Documented Windows GUI hook methods
SetWindowsHookEx and AppInit_DLLs hook all processes
that import user32.dll. Moreover, for example Padodor.W
[12] uses the physical memory device to inject its hook code
into all processes bypassing Windows copy-on-write [6] page
protection. Note that Microsoft has denied direct access to
physical memory from user-mode in recent service packs [13].

As discussed earlier, kernel-mode injection is somewhat
simpler than its user-mode counterpart, as kernel mode has
only a single memory space. Windows rootkits commonly
inject their hooking code into the kernel by loading a
kernel-mode driver. In addition to the documented methods,
rootkits can use the ZwSetSystemInformation API function
for loading drivers.  However, it is also possible to write code
into the kernel memory space from user-mode directly
without a driver. One method is to write through the physical
memory device. See [1] for more information.

2.4. Hiding without hooking

Direct kernel object manipulation was first introduced by
Butler et al. [14]. This technique can hide selected processes
and kernel-mode drivers by directly modifying executive
objects used by the kernel. In theory, this method can also be
used to hide other objects. However, in this paper we are
going to concentrate on process objects. All the previously
mentioned techniques hide information by filtering it
somewhere along the execution path. This technique directly
modifies the source of information.

To keep track of all processes present in the system, the
Windows kernel maintains a doubly-linked list that links
together every process object. When a user-mode application
sends a request for the process list, the appropriate system
service function traverses the linked list and sends the data
back to the client. What Butler et al. [14] noticed, was that
they were able to remove any entry from the list without any
side effects to the actual process. The result was that they
were able to hide any process from all user-mode applications
without affecting its execution in any way. The process of
unlinking an entry from the process list is illustrated in
Figure 3.

The Myfip.h [15] worm uses direct kernel object
manipulation to hide its process. It does not use a driver to
modify the process object. It does this directly from the
user-mode code through the physical memory device. Since
no drivers are used and no code modification is done, it is
very hard to find the module that did the hiding.

3. DETECTING HIDDEN OBJECTS

3.1. General idea
The high-level model to detecting hidden objects is very
simple, even though the actual detection techniques can be
very complex. Essentially, we must acquire two views of the
system: a tainted view and a trusted view. The tainted view is
what the rootkit wants the user to see, with hidden files,
processes and other objects out of sight. The trusted view is
acquired from sources whose integrity we can trust to a
reasonable degree. This view will contain everything actually
present on the system, including the hidden objects. In the
presence of a rootkit the tainted view and the trusted view will
differ, making detection of the rootkit possible. The idea is
not new – it is a traditional approach in computer forensics
and has been utilized for detecting file system modifications
and hidden files.

There are two key challenges. Firstly, we must acquire the
trusted view. In the general case, the operating system does
not provide any documented means to acquire this
information. All sources can be tampered with without any
noticeable side effects. Usually this means that we must
replicate or manipulate operating system functionality or
take advantage of undocumented data structures to acquire
this view. The techniques are complicated and rarely give
perfect results.

Secondly, we must define and acquire the tainted view. At
first this might seem easy, but pitfalls do exist. For example,
as we will show, rootkits hide files in many different ways.
One API function may not see a hidden file, while another
remains unaffected, making the definition of ‘hidden’
somewhat ambiguous. Actually acquiring the tainted view can
also be hard. If a rootkit notices a detection attempt, it may
temporarily reveal the objects it was hiding, making the

tainted view identical to the trusted view.
Detection then becomes impossible.

3.2. Hidden file detection

Comparing the trusted and the tainted
views is a simple and efficient way to find
hidden files. The technique has been
known for several years and has at least
been implemented by Philippe Bourgeois
[16] and independently by Wang Jian [17].

3.2.1. Constructing the trusted
view

The traditional way to construct the trusted
view is to traverse through the file system
using proprietary techniques. By reading
the file system directly from the disk, we
get a fairly reliable view of what files
actually exist. The biggest problem with
such an approach is that we are traversing

Figure 3: The ActiveProcessLinks doubly-linked list before and after entry removal.
(Source: [14], modified by the authors.)
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a live file system and bypassing the standard file system API.
Locking the drive while we do the scan is most likely not
possible – at least for drives that contain critical system files
like the OS itself or the swap file. Thus the file system can
change at any time and we need to accommodate for these
changes as we construct and use our trusted view.

Sector level access to the hard drives is usually possible using
system API functions. If the hard drive is read using API
functions, rootkits can always monitor and alter the behaviour
of these functions and thus the view might not be absolutely
reliable. To hide itself on this level, without interfering in a
detectable way, the rootkit must know the underlying file
system structure and monitor all file system activities actively
in order to keep itself hidden. Such hiding techniques would
be extremely hard to implement and would most likely
downgrade performance dramatically on the machine, so as to
alert the administrator that something is wrong.

In order to speed up the file system, most operating systems
have some form of cache manager enabled. This is a problem
when constructing a trusted view since the information on the
disk might not be accurate and we bypass the standard file
system functions where the caching happens. A new file
might have been created, but it is still cached and has not been
written to the disk yet. Alternatively a file might have been
deleted, but since the operation is cached, the file might still
be on the disk.

3.2.2. Constructing the tainted view

Constructing the tainted view is not necessarily a simple task,
since different rootkits hide in different ways. However, the
traditional Windows API way of listing the contents of a
folder using the FindFirstFile and FindNextFile API functions
is basically all that is needed.

A very simple approach would be just to take the files from
the trusted view and ask if the appropriate API function can
see the file. For example, Wang [17] parses through the raw
file system and for each found file tries to locate the same file
using documented system APIs. On Windows the most
common function used for this is FindFirstFile. However, this
is not sufficient since some rootkits hook only the
FindNextFile function and thus FindFirstFile will find the
files. This will still hide the files from applications that do not
exactly know what they are looking for. They do not know the
contents of a directory and thus ask FindFirstFile to find any
file. The returned search handle is then passed to the
FindNextFile function to search for other files that match the
same pattern.

Usually the first returned files are ‘.’ or ‘..’ and the rest are
returned by calls to FindNextFile. Since we want to know
what files applications would normally see, we should just
traverse through the file system and record the files that
FindNextFile sees.

3.2.3. Comparing the views

Most hidden files can be found by testing whether a file in the
trusted view is also in the tainted view. This type of test is not
sufficient in all cases. For example, the NTFS file system has
metafiles that are in the file system, but are never shown to the
user. It would not be a good idea to report these to the user as
hidden files that are part of a rootkit since they are legitimate
files. On the other hand, excluding some files opens up the

possibility for rootkits to hide their files so that we consider
them to be harmless and filter them. One must be careful with
such filtering.

In addition to testing whether the tainted view contains the
files in the trusted view, we should compare the trusted view
to what FindFirstFile sees. Maslan.a [18] worm hides its files
by changing the name of the file returned by the two functions
into a single dot (‘.’). The files might be visible, although
many applications ignore the ‘.’ entry and even if it is visible
it will be impossible to access them since the name ‘.’ is
reserved for other purposes. Thus, in a sense, we find the
hidden file but it is given back with such a name that many
applications would ignore it and thus the file is hidden. We
need to compare that the name of the file we were asking for
is the one we actually find. This test cannot be done with
FindNextFile.

3.3. Hidden process detection
A simple and efficient approach to detecting hidden processes
is to compare the trusted and tainted view of the system’s
process list. This approach works especially well on hidden
process detection since normal applications have no need to
hide their processes.

3.3.1. Constructing the trusted view
Constructing the trusted view is the most critical and
challenging part of this technique. It is essential that the
collected data has not been tampered with by any malicious
code. There are basically two different approaches to this
problem that have their advantages and disadvantages. The
first one is to maintain a separate and private process list,
whose contents are updated as new processes are created and
old ones are deleted. The second approach is to collect the list
of processes from some internal data structure maintained by
the operating system.

Maintaining a private process list is feasible only if the code
for maintaining its state, also known as the sensor, is
guaranteed to be in place before a single process has been
created. This is not a problem for modern anti-virus
applications that already employ boot-mode drivers. In this
case, there are two known kernel-mode techniques for
implementing the sensor. The preferable technique is to install
a driver-supplied notification routine that is called by the
system whenever a process is created or deleted. This can be
accomplished by using the PsSetCreateProcessNotifyRoutine,
which is documented in the Windows DDK [19].

The other technique for implementing the sensor is quite
extreme and relies on some undocumented and possibly
version-dependent techniques. The basic idea is to hook the
kernel scheduler’s SwapContext function. Since a thread will
not be able to execute before the scheduler switches its
context in, the sensor will be aware of every process whose
threads have received execution time. This approach was
suggested by Butler et al. [14] and implemented by Kasslin
[1]. The implementation showed that the technique was
feasible – the performance impact was less than one per cent
and no stability problems were encountered [1]. The only
drawback is its dependability on undocumented techniques
for locating the SwapContext function, which is not
exported by the kernel module. This might result in
compatibility problems with newer operating system versions
and service packs.
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To maintain a private process list, the sensor must be started
before a single process has started. This is not possible for
standalone applications that run their sensor only when
requested by the user. Therefore, such applications have to
use a different approach to collect an up-to-date process list it
trusts. A solution is to gather the data from internal data
structures maintained by the kernel. There are two known
locations from where to fetch the data. The first one is the
linked list, which links together every process through its
ActiveProcessLinks field [6]. This is the list used by the
ZwQuerySystemInformation system service call when a
user-mode application requests a process list. The second
one consists of three linked lists maintained by the kernel
scheduler. Unexported symbol names
KiDispatcherReadyListHead, KiWaitInListHead and
KiWaitOutListHead point to their locations. On Windows
2000 these lists can be traversed to find every thread in the
system that can then be mapped to their owner processes [20].

However, both locations have their drawbacks. If malicious
code uses kernel-mode components, it can remove elements
from the ActiveProcessLinks linked list without side-effects
[14]. This is not an issue with the linked list used by the
scheduler since, if a thread is removed from any of them,
it will not receive any processor time and thus will not
execute. The biggest problem with using the scheduler
lists is that the technique works only on Windows 2000 and
relies on unexported symbols, making it extremely version-
dependent [1].

The Windows kernel maintains several data structures for its
internal use, most of which are undocumented. Some of them
contain useful data that can be used to create the trusted view.
Ming et al. [5] have suggested the existence of such a location
in the recently published Microsoft research paper.

3.3.2. Constructing the tainted view

Constructing the tainted view is simpler than it was with
hidden file objects. Most process-hiding malware either hook
the ZwQuerySystemInformation function exported by
ntdll.dll or do hiding directly in kernel mode. A reasonable
explanation is that, when an average user wants to know what
processes are executing on his system, he launches the Task
Manager application, which eventually calls the
ZwQuerySystemInformation function.

Therefore, the only requirement in creating the tainted view is
to make sure the execution path goes through the
ZwQuerySystemInformation function. This can be done by
using either the EnumProcesses function exported by
psapi.dll or the CreateToolhelp32Snapshot exported by
kernel32.dll. Both functions are documented in the Windows
Platform SDK [21].

3.3.3. Comparing the views

Hidden processes can be found simply by checking whether
every process in the trusted view is also present in the tainted
view. If the trusted view shows more items than the tainted
view, it is a clear indication of a hidden process. The
operating system has no reason to hide the presence of any of
its processes, as was the case with some of the internal files
used by the NTFS file system. The detector should also check
for the presence of any duplicate entries in the tainted view
since Windows Task Manager shows only one instance of
every pid. If duplicate entries are found, it would indicate

that a malicious process is trying to hide by imitating a benign
process.

4. EXPERIENCES OF REAL-LIFE ROOTKIT
DETECTION

4.1. Practical stealth malware detection

Prior to 2005, generic rootkit detection tools have presented
the user with a long list of processes, registry keys, or hooked
functions. These kinds of tools rely on the user to provide the
detection logic and are therefore feasible only for expert
users. There have also been some easier-to-use tools that
detect rootkits based on different fingerprinting techniques
and are therefore limited to certain rootkit implementations.

F-Secure BlackLight [22] was released as a beta on 10 March
2005. Requirements for BlackLight technology were the
following:

• Generic solution: detection is based on behaviour
(hiding) and not on binaries, services, or other
fingerprints.

• Ease of use: a normal home user should be able to find
rootkits with the tool.

• Accuracy: the scanner should not produce any false
positives.

• Completeness: should find all current rootkits.

• Speed: use intelligent scanning of the hard disk to
provide fast scans.

• Removal: users should be provided with the means to
deactivate rootkits on their system.

BlackLight beta represents what could be called the second
generation of rootkit detection tools. It is generic, but still
usable even for the normal user. However, the technology is
still in infancy and it will take a long time until rootkit
scanner technology has matured to the level where traditional
anti-virus currently is.

4.2. Rootkit threat in early 2005
Rootkit techniques are used by a number of common
keyloggers and other Trojans. Perhaps the most well known
of these is the Padodor/Berbew [7] family. There are also
dozens of pure-breed rootkits such as Hacker Defender. Some
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of these rootkits are more proof-of-concept and some are
clearly malicious having e.g. embedded DDoS functionality.
Hackers use these rootkits in order to secure their foothold
on compromised machines. Currently there is no reliable
data on how extensively and to what ends rootkits are used in
these cases.

Since its release in March 2005, F-Secure has received
reports of BlackLight beta detecting rootkits. The number
of reports is not large enough to draw decisive conclusions,
but many of the more serious system compromises have
been related to software piracy.  It seems that the warez
underground is turning compromised servers into rootkit-
protected pirate FTP-sites for distribution of movies, MP3s,
and cracked software.

The first rootkit-worm, Maslan.A [18] appeared in December
2004. Maslan is notorious for its DDoS attack on Chechen
websites, but its rootkit capabilities are not that well known.
Since Maslan, there has been at least one other stealth worm,
Myfip.H [15], but the threat of a large-scale rootkit worm has
not materialized.

Lately we have seen a new development in rootkits. Variants
of common bots have been using open-source rootkits to hide
themselves. Examples of these are Rbot [23, 24] and SdBot
[25] variants that drop a recompiled FU rootkit driver, and a
Sdbot variant that drops a Turkish version of the Hacker
Defender rootkit. There has also been at least one Mytob
worm variant, Mytob.AR [26] that uses FU rootkit’s driver. In
addition, we have seen some malware, such as the ProAgent
2.0 spyware Trojan that uses the open-source JiurlPortHide
driver for hiding their network connections.

4.3. Rootkits can evade detection
Windows rootkit detection became a hot topic in early 2005.
As an example, Hacker Defender rootkit removal was added
to the Microsoft Malicious Software Removal Tool [27] in
April. Also, a number of stand-alone tools for detecting
rootkits were launched in early 2005. This resulted in rootkit
authors implementing countermeasures to avoid detection. As
with any security weapon-countermeasure arms race, this is
an ongoing battle and it is impossible to build a rootkit
detector that will detect all possible future rootkits.

Hacker Defender rootkit’s public version (v1.0, source
released to public on 1 January 2004) includes a functionality
of adding executable file name masks to a list of trusted
processes. This functionality was most likely originally
intended for preventing the rootkit from hiding from the
attackers’ own tools on a compromised system. However,
attackers soon started adding the names of rootkit detection
tools to the trusted list. Most rootkit scanners are based on the
concept of comparing two views. If the views are the same,
the scanner will not report anything.

Not all current anti-detection methods are based on binary
names. We have also seen rootkit code that evades scanner
processes based on binary version strings. Moreover,
commercial versions of Hacker Defender rootkits  are
marketed as being able to detect anti-rootkit tools with any
binary name and even with packed binaries. This would
suggest that there is something very close to anti-virus
fingerprinting and heuristics in place.

Obviously a simple ‘tainted view/clean view’ comparison is
not enough. Either we will have to find alternatives for the

comparison approach or we will have to prevent rootkits from
recognizing the scanner.

4.4. Rootkit techniques in non-malicious use

During the internal beta testing of the F-Secure BlackLight
beta rootkit scanner we did not receive false positives and
were able to detect all rootkits we tested it on. Quite soon
after the public launch we began receiving reports of false
positives from some users – not many, but some. It turned out
that a number of harmless third-party software packages were
using rootkit techniques to hide something. So far we have
found three categories:

• Security software that hides its processes or files, most
likely in order to avoid attacks from malware.

• Data restoration and system recovery software that uses
filter drivers to hide its backups on disk.

• Commercial data-hiding software targeted for multi-user
environments. One apparent target group for these
applications is people who want to hide adult material
from their family. Features of these programs seem very
similar to common file hiding rootkits such as Vanquish
or HE4Hook.

We strongly believe that if you want to prevent other people
from accessing your files, you should use operating system
access controls and encryption – not rootkit stealth
techniques.

We have also encountered a few cases where F-Secure
BlackLight reports some normal system files as hidden in
addition to the ones actually belonging to the malware. After
further investigation, the cause has always been an intentional
or unintentional misconfiguration of the rootkit. For example,
in one case the rootkit was configured to hide all files and
directories whose name started with the string ‘system’.
As the reader can imagine, this resulted in thousands of
hidden files.

5. CONCLUSIONS
Windows rootkit technology is maturing rapidly and new
hiding techniques emerge every year. This technology has
frightening possibilities. Although most current rootkits do
not hide themselves effectively from anti-virus scanners, it
is certainly possible to create a rootkit that, once activated,
is completely hidden from anti-virus scanning engines. Also,
these same technologies can be used to create backdoors
that bypass personal firewalls. Stealth is certainly back and
kicking!

Current research and public tools prove that it is possible to
achieve generic rootkit detection – detection that is based on
behaviour. However, recent events have proven that, as with
any countermeasure, these detectors can always be bypassed
with a new generation of rootkits. This is the same arms race
that we have seen e.g. with firewalls all over again.

At the moment hidden process detection seems to be the most
feasible – it is fast, produces the least false positives, and it
usually detects the most interesting hidden item in the system:
the rootkit process. However, in the future the significance of
hidden process detection will most likely diminish as rootkits
try to hide without any user-mode processes. Rootkits will
most likely still have hidden files, despite some efforts on
creating in-memory malware. Also, Windows rootkits will
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need to launch themselves on reboot in some way. These
launch points can be detected by rootkit scanners.

Today, the rootkit threat is still rather small compared to
more traditional malware technologies. On the other hand,
stealth malware fits perfectly into the arsenal of network
crime. We will most likely see a lot more stealth in the
coming years. The anti-virus industry should make every
effort to be pre-emptive and address this threat before it truly
materializes – and perhaps prevent it ever really becoming a
major problem.
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