
5/27/2010

1

FILE ANALYSIS AND UNPACKING:

THE AGE OF 40M NEW SAMPLES PER YEAR

Mario Vuksan and Tomislav Pericin, ReversingLabs

5/27/2010

2

Agenda

� Big and scary numbers

� Introduction to the binary mess out there (the problem)

� Packers and compressions everywhere we look

� Introduction to the arsenal of file analysis tools

� Identification, validation and unpacking

� Introduction to the binary layering (the solution)

� Better identification, validation and unpacking

5/27/2010

3

Big numbers!

� Everything has grown (so have we)

� Hard drives & Memory

� Operating Systems

� Ethernet Bandwidth

� Digital Camera Resolution

� Number of Photos on My Laptop

� Number of Apps on my iPhone

� Number of People Trying to Attack Me

5/27/2010

4

Moore’s Law – 60% Growth

Source: Wikipedia

5/27/2010

5

Nielsen’s Law – 50% Growth

Source: Jakob Nielsen

5/27/2010

6

Some big and scary numbers

� Still exponential growth in:

� Amount of new malicious samples

� Amount of good software

� Amount of automatic updaters

� Amount of security updates

� Growth of signatures

� Memory footprint of AV solutions

� Network usage of AV solutions

� AV installer size

5/27/2010

7

AV Solution Size – 55% Growth

0

20

40

60

80

100

120

2004 2005 2006 2007 2008 2009 2010

MFE VirusScan in MB

Norton AV in MB

KAV Size in MB

AVG Free in MB

Adobe Reader in MB

iTunes in MB

5/27/2010

8

We’re good!

� iTunes track hardware and new media

development

� 55% year of year growth is in line with

bandwidth and hardware growth

� More bandwidth, more attacks, more

hardware to handle it

� We are in the realm of acceptable

5/27/2010

9

Or are We?

� Installer figures do not include everything

� Base definitions in 2010

� McAfee’s are 65MB

� Kaspersky’s are 100MB

� Etc.

� This is extra download

� This implies extra performance impact

5/27/2010

10

And Extra Bandwidth Usage

5/27/2010

11

So what are we doing?

� Are we beating the curve?

� Or are we pushing the envelope to stay just

below the tolerance level?

� Are notebook security offerings a tell tale

sign that we are failing?

� Why does a security solution costs as much as

Operating System it is trying to protect?

5/27/2010

12

Lessons from Microsoft

0

5

10

15

Operating System Install Footprint in GB

5/27/2010

13

File Analysis & Unpacking

5/27/2010

14

Some great news

� Number of publicly available packer and

protector families has not significantly grown

in last two years

� Number of version updates for these formats

has remained constant

� This feels like a doable problem to solve

5/27/2010

15

And some bad news

� No need to use some obscure packer

� If one can simply use

� Multi-layer unpacking

� Pack data in overlay

� Pack data in resources

� Mix in Installer Formats

� Mix in Archive Formats

� And of course

� Custom pack standard formats like UPX or FSG

5/27/2010

16

Things have not changed

� No significant growth in commercial

packing/protecting tools

� Significant growth in custom

packing/protection

� One problem has replaced the other

� But could it be more vicious….

5/27/2010

17

What’s the impact?

� Case #1

� One Good Well Tested Malware Sample

� Let’s call it Conficker

� Let’s pack the code with UPX, ASPack or FSG

� Without unpacking, and a simple automated build

script, this sample could yield:

� 3 Signatures

5/27/2010

18

What’s the impact?

� Case #2

� One Good Well Tested Malware Sample

� Let’s call it Conficker 2

� Let’s crypt it with YodaCrypt, tELock or RCryptor

� Let’s pack it with UPX, ASPack or FSG

� Without unpacking, and a simple automated build

script, this sample could yield:

� 9 Signatures

5/27/2010

19

What’s the impact?

� Case #3

� One Good Well Tested Malware Sample

� Let’s call it Conficker 3

� Let’s crypt it with YodaCrypt, tELock or RCryptor

� Let’s pack it with UPX, ASPack or FSG

� Let’s compress it with ZIP, RAR, CAB or 7ZIP

� Without unpacking, and a simple automated build

script, this sample could yield:

� 36 Signatures

5/27/2010

20

Obviously!

� We do unpack formats (but not very well)

� Malware writers would say:
� But there are other ways to hide malware

� It’s just that this is a very easy way to do it

� This suggests that we can either
� Rewrite our AV solutions

� OR stuff our Signature Databases

� Which one are we doing today?

� How long before the system will go bust?

5/27/2010

21

Solutions

� Move the signatures to the cloud

� Solves the growing signature set problem

� Blacklist formats

� Solves the need to unpack samples

� Apply harsher heuristics

� Solves the need to analyze files

� Hope whitelisting will work

� If it is not known, it is likely bad

5/27/2010

22

Building the system

5/27/2010

23

The big picture

� Viable compressed binary content data

� Documents (PDF, SWF, …)

� Archives (ZIP, RAR, CAB, …)

� Archive SFX modules (ZIP, RAR, CAB, …)

� Installers (InstallShield, InnoSetup, NullSoft, …)

� Portable executable modifiers (UPX, ASPack, …)

� Crypters, Packers, Protectors, Bundlers, Hybrids, …

5/27/2010

24

The big picture

� Binary content inspection requirements:

1. Format identification
� Accurate, Fast and Resilient to obfuscation

2. Validation
� Fast content integrity and recovery checks

3. Unpacking
� Fast and Resilient to malformations

4. Analysis
� As fast as possible, accurate but detecting variants

5/27/2010

25

Building the system

� General system requirements:

� Applicable in every file analysis scenario

� AntiVirus, WhiteListing, Forensics, Reversing…

� System analysis requirements:

� Accurate identification & format validation

� Unpacking by correct model application

� Static, Dynamic and Generic unpacking

� Rich reporting for decision making

5/27/2010

26

Binary layering|Inspection

DOS

PE

Sections

STUB

Overlay

File layout

Packed PE file layout

• Type of the file
1. Type of PE shell modifier
2. Scan overlay for compressed data
3. Scan sections for compressed data

4. Scan resources for compressed data

Inspecting the data where it really is

Binary layering inspection checklist

Resources

5/27/2010

27

Binary layering|Benefits

� Binary layering benefits:

� Identifying formats by data not signatures

� Maximum utilization of every unpacking module

� Centralization of basic unpacking components

� Maximum compressed data extraction

� Significant speed increase

� Ability to add individual segments to queue

� Ability to do parallel segment decompression

� Ability to go infinitely in depth

5/27/2010

28

Binary layering|Example

Google Earth

Resources

Overlay

7zip InstallShield

Data1.cab
Data1.hdr

Engine32.cab
Layout.bin
Setup.exe
Setup.ibt
Setup.ini
Setup.inx

Upx 1.25

Data1.cab

DATA1*.*

Engine32.cab

Engine32*.*

Setup.ibt

LZ\setup.ibt*.*

Overlay | CAB

Unpacked

PE32file

*no overlay

Complex file identity

5/27/2010

29

File(s)

Report(s)

Basic system layout

System

Identification Validation Recovery Unpacking

Archives

Images

Streams

PEModule.Static

Module.Dynamic

Module.Generic

5/27/2010

30

Identification

� Building a layered identification database

� Layering the signatures inside the database

� Known obfuscators at the top layer

� Accurate signatures at the bottom

� Accurate signatures can be used for authentication

� Example: Top signature for MSLRH, bottom for UPX

� File profiling to eliminate the unnecessary scans

� Filtering based on PE specifics

� Example: ASPack doesn’t support x64

5/27/2010

31

Validation & Recovery

� Building validation layer

� First step before any unpacking is done

� Validation must take everything into account

� Damaged files and broken records

� Malformed files

� Validation produces recovery assessment

� Partial data recovery for archives and images

� File integrity recovery for PE files

5/27/2010

32

General unpacking problems

� Insufficient depth of data inspection

� Unpacking modules not working in conjunction

� Unpacking modules not expecting more data

� Unpacking modules not built for steganography

� Unpacking modules not built for validation

� Unpacking modules performing partial unpacking

� Unpacking to memory or disk?

� Problems with IP data inspection

� Removing DRM to inspect for malware?

5/27/2010

33

File unpacking

� Building unpacking layer
� Unpackers are built for specific version spans

� Unpacking by correct model application:

� Static unpacking

� Applied first as the most secure unpacking system

� Binary reusing to be used where possible

� Dynamic unpacking

� Applied last as the most resilient unpacking form

� Aided by sandbox or emulator in the “field”

� Generic unpacking

� Applied when such unpacking is possible

5/27/2010

34

File unpacking

� Unpacking metrics

� Unpacking speed is limited by:

� Decompression algorithm(s), average 10 – 20 MB/s

� Decryption algorithm(s), average 200 – 300 MB/s

� Output medium average speed

� Hard disk: 20 – 100 MB/s

� Memory: 6400+ MB/s

5/27/2010

35

File unpacking

� Static PE file unpacking results:

� Unpacking small files (under 1 MB): 20 ms – 100 ms

� Unpacking larger files (under 10 MB): 150 ms – 650 ms

� Unpacking large files (over 10 MB): 1 s and above

� Dynamic PE file unpacking results:

� Unpacking small files (under 1 MB): 50 ms – 120 ms

� Unpacking larger files (under 10 MB): 250 ms – 1 second

� Unpacking large files (over 10 MB): 2 s and above

5/27/2010

36

File unpacking

� Improving unpacking metrics

� Parallel unpacking from single source

� Decompressing multiple archive files

� Decompressing content from multiple layers

� Parallelism limitations

� Installers rely on predefined file/folder layout

� Installers can contain multiple “one way” layers

� Portable executable packers require batching

5/27/2010

37

Performance testing

5/27/2010

38

Unpacking performance|Test

� Unpacking PE files test parameters

� Unpacking PE shell modifiers only (UPX, FSG, …)

� Sample base

� 1627 PE32 files packed with 140 different packers

� Sample base with clean & malicious packed samples

� Sample base with some damaged and invalid files

� Sample size: 758 bytes – 1.30 Mbytes (109 MB total)

� Testing machine

� VMWare: Windows XP SP2 (single core)

5/27/2010

39

Unpacking performance|Test

1627 15681568

4533

2042

530 534
300+530

0
249

35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

BlackBox KAV BlackBox + KAV

Files

Objects

Time (seconds)

Events

5/27/2010

40

Unpacking performance|Test

� Unpacking PE files test parameters

� Unpacking installers only (InstallShield, Wise, …)

� Sample base

� 20 files packed with 6 different install packages

� Sample base with clean packed samples

� Sample base without damaged or invalid files

� Sample size: 58 Kbytes – 178 Mbytes (400 MB total)

� Testing machine

� VMWare: Windows XP SP2 (single core)

5/27/2010

41

Unpacking performance|Test

20 20 20

4275

9174

12175

95 300 3600 2 2
0

2000

4000

6000

8000

10000

12000

14000

Core KAV Core + KAV

Files

Objects

Time (seconds)

Events

5/27/2010

42

Final Remarks and

Questions

