
5/26/2010

1

Copyright 2009 Cybertrust. All Rights Reserved.

Kernel-22

A Framework for Creating Analysis Tools

Mike McCarl

ICSALabs

mmccarl@icsalabs.com



5/26/2010

2

2

What is Kernel-22?

�A source code framework that can be used to produce alternate kernel32.dll 
modules
– Produce a kernel32.dll module that can be used by any Win32 application
– Developers can easily augment the functionality of kernel32.dll by adding custom code
– Functionality of “the real” kernel32.dll is retained

�Consists of 4 source files
– 2 of which can be generated from the output of the dumpbin utility
– 1 header file
– 1 containing 2 simple functions (including DllMain)

�Without modification, the framework produces a kernel32.dll module that 
has no apparent effect



5/26/2010

3

3

What makes it special?

�There are other tools/programs/techniques that get between an application 
and kernel32.dll
– Some use hooks
– Some inject code

�Kernel-22 avoids complex coding to get into the system

� It is “special” simply because it uses “ordinary” means to operate

�For complete details, Kernel-22.doc is available for download



5/26/2010

4

4

Why use it?

�Consider a reverse-engineering debug session. You might:
– Do static analysis to identify the malware’s dependencies and create a debugging 
strategy

– Set breakpoints on functions in kernel32.dll to examine parameters or other application 
states

– Alter return codes or data to simulate certain conditions

�Suppose that instead you could run the program and produce a log of the 
kernel32 functions called
– A more complete list of the functions called would be produced (especially if the malware 
was packed)

– The sequence of called functions is much clearer
– Faster
– Could be automated!



5/26/2010

5

5

Demonstration: Logging Kernel32 Calls



5/26/2010

6

6

Demonstration: Logging Kernel32 Calls



5/26/2010

7

7

Demonstration: Logging Kernel32 Calls



5/26/2010

8

8

How It’s Done

�Registry Key \HKLM\SYSTEM\CurrentControlSet\Control\Session Manger
– Value ExcludeFromKnownDlls (REG_MULTI_SZ): Append “Kernel32.dll”
– Reboot after change

�Loader will now use search path rules to locate kernel32.dll

�Put the new kernel32.dll and the program to be monitored in the same 
directory

�Run the program



5/26/2010

9

9

WAIT A MINUTE!

� If the “local” kernel32.dll is loaded, how does it create a log file?

�How does it implement all those functions that were called?

�Answer: It doesn’t. The “real” kernel32.dll does.



5/26/2010

10

10

Apparent Module Structure

Kernel32.dllApplication kernel32.dll



5/26/2010

11

11

The Mechanics of Dlls

�Dlls may be made available to a process in 2 ways:
– Implicitly: A module of the process contains an Import Table which specifies the names 
of required Dlls and the functions used. The operating system reads this table at load 
time and makes the specified Dlls available before execution begins.

– Explicitly: The process itself calls for the loading of a Dll by calling one of the LoadLibrary 
functions. The load of the library occurs after execution of the process begins.

�Addresses to imported functions of an implicitly loaded Dll are resolved at 
load time
– References to functions are initially resolved at link time to other references in the import 
table. At load time the loader simply has to fill in the “real” addresses.

– To initially resolve the import addresses, the linker requires a “.lib” file. The lib file 
specifies the name of the dll that needs to be loaded as well as the names of the 
functions that are available.

�Addresses to functions in a Dll loaded explicitly can be determined by 
calling GetProcAddress for the desired function.



5/26/2010

12

12

Explicit Load Option

� If we try to load the real kernel32.dll explicitly, we encounter a dilemma 
immediately
– The LoadLibrary must be called to load kernel32.dll
– The kernel32.dll we are trying to build also exports a function called LoadLibrary. This 
function doesn’t actually do anything. It will eventually try to call LoadLibrary again, 
which makes it infinitely recursive.

– Even if you could avoid the infinite loop (which can be done), you still need to have the 
real kernel32 loaded in order to call the LoadLibrary function to load it.

�Conclusion: Explicit loading of the real kernel32.dll won’t work.



5/26/2010

13

13

Implicit Load Option

�The loader reads the import table of a module to determine which other 
modules to load

�The Dll name supplied in the import table does NOT contain the full path of 
the Dll

�Using “search path” rules, the loader first looks in the directory from which 
the module was loaded

� If our kernel32 requires a module named kernel32, the loader will look in the 
directory from which our kernel32 was loaded, and load it again!

� Implicit loading of the real kernel32.dll won’t work

�Catch-22!



5/26/2010

14

14

What if…?



5/26/2010

15

15

copy kernel32.dll kernelkernel.dll



5/26/2010

16

16

Resolving the Catch

�There’s nothing that says that kernel32.dll must be named kernel32.dll.

� It is simply a convention that all programs that wish to use that particular 
set of functions know to use kernel32.dll

� If we copy kernel32.dll to another file name, we will have a module that still 
provides the same functions, but the loader won’t confuse it with our
kernel32.dll



5/26/2010

17

17

Actual Module Structure

kernelkernel.dllApplication kernel32.dll



5/26/2010

18

18

The Next Problem…

�How to make our kernel32.dll dependent on kernelkernel.dll



5/26/2010

19

19

The Source of a Dependency

�The referenced dll name comes from the lib file that the linker uses to 
initially build the import table.
– The .lib file gets it from the “LIBRARY” statement in the .def file used to build the dll

�How can we change it?
– A .lib file is a binary file, so using a hex editor might work, but this isn’t very robust and 
may be risky.

– A better way is to build our own kernelkernel.lib from scratch.



5/26/2010

20

20

Building KernelKernel.lib

� .Lib files are created in conjunction with .Dll files, so we need a project to 
create kernelkernel.dll

�The only functions that need to be implemented are those that our 
kernel32.dll will call
– GetModuleHandle
– GetProcAddress

�Prototypes for these functions are available in the PlatformSDK header files

�All we want is the .lib file, the dll file created is superfluous. Therefore, the 
function bodies we create can be empty.

�When the compile/link is complete, throw away the kernelkernel.dll and link 
the .lib file with our kernel32.

�As more functionality is desired, add other functions to kernelkernel or use 
GetProcAddress to locate them in kernelkernel.dll.



5/26/2010

21

21

Potential Uses

�Detect memory leaks or code injections

�Unpacking

�Simulations

�Protect files



5/26/2010

22

22

Demonstration: Memory Leak Detection

�Framework is modified to add additional processing to the memory 
allocation/release functions
– GlobalAlloc, GlobalReAlloc, GlobalFree, GlobalDiscard
– HeapAlloc, HeapRealloc, HeapFree
– FormatMessageA, FormatMessageW
– LocalAlloc, LocalDiscard, LocalReAlloc, LocalFree
– TlsAlloc, TlsSetValue, TlsFree
– VirtualAlloc, VirtualAllocEx, VirtualFree, VirtualFreeEx

�When memory is allocated, add an entry to a list.

�When memory is freed, remove the corresponding entry from the list

�At the end of the program, anything still in the list is leaked memory.



5/26/2010

23

23

Demonstration: Memory Leak Detection



5/26/2010

24

24

Demonstration: Memory Leak Detection



5/26/2010

25

25

Demonstration: Memory Leak Detection



5/26/2010

26

26

Demonstraton: Memory Leak Detection



5/26/2010

27

27

Demonstration: Memory Leak Detection



5/26/2010

28

28

Demonstration: Memory Leak Detection



5/26/2010

29

Copyright 2009 Cybertrust. All Rights Reserved.

The End
Thank You

Kernel-22

A Framework for Creating Analysis Tools

Mike McCarl

ICSALabs

mmccarl@icsalabs.com


