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THE SCARY SLIDE

• Malware collection size is growing fast

• Analyst teams get  larger but this hinders effective communication: can’t double-

check with everyone in the team about every new sample (anymore)

• As a result:

• Sample assignments are random

• Signatures become more redundant

• Malware naming goes downhill, many generic families
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SOLUTION: FAST BINARY 

BLOB SEARCH

• Think “Bing” for binary (malware) content!

• FAST – results in seconds, or less

• Instant feedback for analysts

• MASSIVE – terabytes of data

• Content agnostic

• Works on dumps, scripts, JPEGs, anything

• (we index dumps, for now)

• Design parameter: need a minimum of four 

contiguous bytes to query
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DEMO
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NAMING

• Don’t know the name? Just grab interesting bytes from the dump and query
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SAMPLE COLLECTION

• Got some kind of marker, not good enough for a detection

• “{adif}” == 0x7b 0x61 0x64 0x69 0x66 0x7d

• Get samples, write better signature

• Easy to check future samples



5/27/2010

7

INSTA-SIGNATURE TESTING

• Allows instant feedback on refinement of existing signatures

• Prevent false positives: by instantly checking if patterns match common clean files

• Works on dumps; helps prevent in-mem FPs

• Limit splash damage: patterns match samples in other families

• Verify tens of thousands of expected matches in matters of seconds:

• Much faster than authoring signature, compiling, and then waiting for the 

product to scan at 50 files/second

• Analyst sig refinement algorithm:

• x = short fragment, n = hit count

• while( hitcount( x + extra ) < n )

• refine(extra);
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FAQ

•
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IMPLEMENTATION CHALLENGES

• What index data structures are appropriate for binary content

• How to deal with junk (e.g., compressed or packed data)

• How to make indexing/querying FAST

• How to make indexing/querying SCALE

• How to deal with the VOLUME of data
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INDEXING 101

• Each document is assigned a unique 

Document ID

• This identifier, and the document it 

refers to, is stored in the Document 

Map

• Each document is tokenised, and each 

token is then associated with the 

document ID in a structure that makes 

it very efficient to look up tokens. This 

process is called “inverting the index”
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BINDEX APPROACH SIMILAR TO INDEXING ASIAN 

LANGUAGES

•

巨大的云

e8 5d 27 59 84 76 91 4e

e8 5d 27
5d 27 59

27 59 84
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SEARCH QUIRKS

• For these two “documents”

• The “query” 0x1122334455 is implemented under the hood as 

• In practice, this doesn’t seem to matter

0x112233445566778899

0x112233440022334455

so will return a match for both “documents”

0x11223344 && 0x22334455

“cloud”

63 00 6c 00 6f 00 75 00 64 00

Any doc with UTF-16 

“cl”, “lo”, “ou” and “ud”

Not necessarily 

adjacent!

(mostly --- have had FPs with ASCII strings encoded as UTF-16)
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STORING THE N-GRAMS

• B+ trees are ideal

• Designed for external storage use, very high fan-out minimises disk hits, node size 

aligned with disk block size

• Leaf traversal capability helps with duplicate key / value pairs

• If Document ID is ulong / uint, can jam it directly into the leaves

• Some implementations keep a parent offset as part of the node (convenient, but bad 

idea)
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SCALABLE ARCHITECTURE
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AVOIDING JUNK

• Don’t want to index compressed or encrypted data

• Useless for search

• Pollutes and bloats index

• Most malware today is compressed and encrypted, bad to index

• Solution: we index memory dumps (existing system already in place generating these)

• Problem 1: Memory dumps are big (avg 800K, some >20MB)

• Problem 2: Multiple dumps per file

• Uniquify n-grams per dump (result: BIG reduction in size, ~50% for memory images)

• Ratio of original n-gram count to unique count good indicator of compression / encryption

• We tried throwing out n-grams we see more than three times

• Stops indexing 0x00000000, only makes a small different to count though (1-2%)

• Multiple dumps can simply be concatenated, but this leads to “linear combination” potential 
FPs. Not sure if this is a problem in practice.
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MANAGING DISK SPACE

• We process new dumps incrementally, and build fixed size trees (bonsai)

• Easy for distributed construction and search

• Permits recycling strategy: can simply delete old trees (this is extra good --- delete in 

B+ trees is so tricky that most books leave it as an “exercise to the reader”)

• Easy to manage disk space, but can only query against the last few days

• We roll over trees once they hit a certain size (say 8G)

• Enables trees to be constructed entirely in memory, then serialised, for massive

speedup.
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BUILDING THE INDEX

• Tried many, many approaches to building the B+ trees fast. Have to keep up with dump 

infrastructure

• First tried SQL Full Text Engine [findex] - fast indexing initially, good query speed but 

excessive space usage (x15 or more). Seems to break down when things get really 

large.

• Using existing databases SQLite, SQL Server vs. rolling our own (roll your own, of 

course, code reuse is a sin ☺)

• Native code vs. managed code (complex issue, we tried both, changed mind many 

times, will let you know my opinion on the day)

• 64-bit vs. 32-bit trees. This decision affects utterly everything, and we kept picking 

the wrong one! Solution is a bit subtle…

• Caching strategies
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PERFORMANCE RESULTS

• Around 270K inserts / sec / core on older hardware (>1M on my spiffy i7), but can build 

many trees at once

• Approximately one average 700K dump / sec / core

• (on average, one 700K dump yielded 260K unique 4-grams)

• On average, index is 4x size of data, when indexing dumps using 4-grams

• Scales linearly with cores, provided enough memory

• Disk not heavily loaded during tree construction
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SUMMARY

• BINDEX is

• practical

• scalable

• performant

• BINDEX has a valuable role to play in modern analyst workflow

• naming

• sample gathering

• signature refinement

• FP testing (including in-memory FPs)

• Maybe even automation…
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THE END


