
5/27/2010

1

5/27/2010

2

THE SCARY SLIDE

• Malware collection size is growing fast

• Analyst teams get larger but this hinders effective communication: can’t double-

check with everyone in the team about every new sample (anymore)

• As a result:

• Sample assignments are random

• Signatures become more redundant

• Malware naming goes downhill, many generic families

0

5 000 000 000 000

10 000 000 000 000

15 000 000 000 000

20 000 000 000 000

25 000 000 000 000

30 000 000 000 000

35 000 000 000 000

40 000 000 000 000

45 000 000 000 000

20
05

-0
1

20
05

-0
8

20
05

-1
0

20
05

-1
2

20
06

-0
2

20
06

-0
4

20
06

-0
6

20
06

-0
8

20
06

-1
0

20
06

-1
2

20
07

-0
2

20
07

-0
4

20
07

-0
6

20
07

-0
8

20
07

-1
0

20
07

-1
2

20
08

-0
2

20
08

-0
4

20
08

-0
6

20
08

-0
8

20
08

-1
0

20
08

-1
2

20
09

-0
2

20
09

-0
4

20
09

-0
6

20
09

-0
8

20
09

-1
0

20
09

-1
2

20
10

-0
2

20
10

-0
4

Incremental Files

Incremental Bytes

Total Files

Total Bytes

5/27/2010

3

SOLUTION: FAST BINARY

BLOB SEARCH

• Think “Bing” for binary (malware) content!

• FAST – results in seconds, or less

• Instant feedback for analysts

• MASSIVE – terabytes of data

• Content agnostic

• Works on dumps, scripts, JPEGs, anything

• (we index dumps, for now)

• Design parameter: need a minimum of four

contiguous bytes to query

5/27/2010

4

DEMO

5/27/2010

5

NAMING

• Don’t know the name? Just grab interesting bytes from the dump and query

5/27/2010

6

SAMPLE COLLECTION

• Got some kind of marker, not good enough for a detection

• “{adif}” == 0x7b 0x61 0x64 0x69 0x66 0x7d

• Get samples, write better signature

• Easy to check future samples

5/27/2010

7

INSTA-SIGNATURE TESTING

• Allows instant feedback on refinement of existing signatures

• Prevent false positives: by instantly checking if patterns match common clean files

• Works on dumps; helps prevent in-mem FPs

• Limit splash damage: patterns match samples in other families

• Verify tens of thousands of expected matches in matters of seconds:

• Much faster than authoring signature, compiling, and then waiting for the

product to scan at 50 files/second

• Analyst sig refinement algorithm:

• x = short fragment, n = hit count

• while(hitcount(x + extra) < n)

• refine(extra);

5/27/2010

8

FAQ

•

5/27/2010

9

IMPLEMENTATION CHALLENGES

• What index data structures are appropriate for binary content

• How to deal with junk (e.g., compressed or packed data)

• How to make indexing/querying FAST

• How to make indexing/querying SCALE

• How to deal with the VOLUME of data

5/27/2010

10

INDEXING 101

• Each document is assigned a unique

Document ID

• This identifier, and the document it

refers to, is stored in the Document

Map

• Each document is tokenised, and each

token is then associated with the

document ID in a structure that makes

it very efficient to look up tokens. This

process is called “inverting the index”

5/27/2010

11

BINDEX APPROACH SIMILAR TO INDEXING ASIAN

LANGUAGES

•

巨大的云

e8 5d 27 59 84 76 91 4e

e8 5d 27
5d 27 59

27 59 84

5/27/2010

12

SEARCH QUIRKS

• For these two “documents”

• The “query” 0x1122334455 is implemented under the hood as

• In practice, this doesn’t seem to matter

0x112233445566778899

0x112233440022334455

so will return a match for both “documents”

0x11223344 && 0x22334455

“cloud”

63 00 6c 00 6f 00 75 00 64 00

Any doc with UTF-16

“cl”, “lo”, “ou” and “ud”

Not necessarily

adjacent!

(mostly --- have had FPs with ASCII strings encoded as UTF-16)

5/27/2010

13

STORING THE N-GRAMS

• B+ trees are ideal

• Designed for external storage use, very high fan-out minimises disk hits, node size

aligned with disk block size

• Leaf traversal capability helps with duplicate key / value pairs

• If Document ID is ulong / uint, can jam it directly into the leaves

• Some implementations keep a parent offset as part of the node (convenient, but bad

idea)

5/27/2010

14

SCALABLE ARCHITECTURE

5/27/2010

15

AVOIDING JUNK

• Don’t want to index compressed or encrypted data

• Useless for search

• Pollutes and bloats index

• Most malware today is compressed and encrypted, bad to index

• Solution: we index memory dumps (existing system already in place generating these)

• Problem 1: Memory dumps are big (avg 800K, some >20MB)

• Problem 2: Multiple dumps per file

• Uniquify n-grams per dump (result: BIG reduction in size, ~50% for memory images)

• Ratio of original n-gram count to unique count good indicator of compression / encryption

• We tried throwing out n-grams we see more than three times

• Stops indexing 0x00000000, only makes a small different to count though (1-2%)

• Multiple dumps can simply be concatenated, but this leads to “linear combination” potential
FPs. Not sure if this is a problem in practice.

5/27/2010

16

MANAGING DISK SPACE

• We process new dumps incrementally, and build fixed size trees (bonsai)

• Easy for distributed construction and search

• Permits recycling strategy: can simply delete old trees (this is extra good --- delete in

B+ trees is so tricky that most books leave it as an “exercise to the reader”)

• Easy to manage disk space, but can only query against the last few days

• We roll over trees once they hit a certain size (say 8G)

• Enables trees to be constructed entirely in memory, then serialised, for massive

speedup.

5/27/2010

17

BUILDING THE INDEX

• Tried many, many approaches to building the B+ trees fast. Have to keep up with dump

infrastructure

• First tried SQL Full Text Engine [findex] - fast indexing initially, good query speed but

excessive space usage (x15 or more). Seems to break down when things get really

large.

• Using existing databases SQLite, SQL Server vs. rolling our own (roll your own, of

course, code reuse is a sin ☺)

• Native code vs. managed code (complex issue, we tried both, changed mind many

times, will let you know my opinion on the day)

• 64-bit vs. 32-bit trees. This decision affects utterly everything, and we kept picking

the wrong one! Solution is a bit subtle…

• Caching strategies

5/27/2010

18

PERFORMANCE RESULTS

• Around 270K inserts / sec / core on older hardware (>1M on my spiffy i7), but can build

many trees at once

• Approximately one average 700K dump / sec / core

• (on average, one 700K dump yielded 260K unique 4-grams)

• On average, index is 4x size of data, when indexing dumps using 4-grams

• Scales linearly with cores, provided enough memory

• Disk not heavily loaded during tree construction

5/27/2010

19

SUMMARY

• BINDEX is

• practical

• scalable

• performant

• BINDEX has a valuable role to play in modern analyst workflow

• naming

• sample gathering

• signature refinement

• FP testing (including in-memory FPs)

• Maybe even automation…

5/27/2010

20

THE END

