
Zhenxiang Jim Wang

Microsoft Malware Protection Center

Virtual Machine Protection
Technology and AV industry

 Joined Microsoft in 2007
 Main work in Microsoft:

 Static unpacker development.
 Finished more than 10 static unpackers, including: Molebox, PECompact, PESpin, SVKP, ASProtect, etc

 Virtual machine technology analysis/research

 MMPC
 Microsoft Malware Protection Center (MMPC) established in 2006.

 Partner with other MS security teams (MSRC, WLSP/SmartScreen, etc.)

 Responsible for protecting users from malicious threats.

 Provide core Antimalware technology to Microsoft Security Essentials™、Microsoft® Windows® Defender、
Malicious Software Removal Tool, and Forefront™ products.

2

Intro

 Agenda
 Introduction

 The Inherent Ability of VM to Defeat Emulation
 Case Study

 VM to Dominate Packers

 The Pervasive Virtualized Packers Defeats Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case Study: Asprotect Stolen Code & Its VM

Pervasive Virtualized Packers Affect AV industry

3

 Introduction

 The Inherent Ability of
VM to Defeat Emulation
 Case Study

 VM To Dominate Packers

 Pervasive VM Defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

4

Introduction
Packer Generations & VM Protection Technology

 Compressor UPX, ASPack

 Protector Asprotect, SVK Protector

 VM Protection system or virtualised packers

Themida, VMProtect.

 Need to clarify, ASProtect should be considered as a virtualized packer rather than Protector, because there are 4 VMs
used in it.

Introduction: Packers and Generations

5

Introduction:
Characteristics and Usage of VM in Packers

6

 Virtualization is not new technology
 Used in different fields to virtualise resource, CPU and application, etc.

 In packers, virtualization is used to defeat reverse engineering.
 Subverts the concept of traditional packers
 Original instructions are converted to VM instructions and removed permanently
 VM instruction are interpreted to execute

 Virtualization techniques in packers can be used to protect:
 Critical function/code snippet
 Specific instructions, often used in specific situations.

For example, in Asprotect, two VMs are used to protect special instructions,
such as JCC, JMP, CALL etc, in advanced import protection and stolen code
 See also: Bonus slide about Asprotect stolen code.

Introduction: VM Implementation

7

 The following components are necessary to
implement a VM

 VM API
 Used to enter/exit VM. Usually, you cannot expect to find a CALL instruction

 The code to enter/exit VM can be generated at packing time(Themida, VMProtect, ASProtect) or
at runtime time (ASProtect)

 VM Context
 Contains all info to emulate instructions, such as: (1)VM EIP; (2)The buffer to exchange register

values between VM and real CPU; (3)VM handlers info; and (4)other specific info.

 VM Handler
 VM handlers are used to decode and execute VM instructions

 To analyze a VM
 Understand how VM handlers work and determine the functions of all VM

handlers
 Collect the detailed information about each VM handler

 VM handlers play a critical role in the process of protecting VM
from reverse engineering
 If VM handlers are not safe, the VM is not safe and the applications protected

with it will be unsafe

 Obfuscation techniques make the handlers powerful
 VM handler is usually small and the instructions are straightforward, but

obfuscation will make it larger and difficult to understand

8

Introduction:
Obfuscation, the Foundation

 How to deal with packed samples is one of the most
challenging problems AV industry faces.
 Packers protect more than 80% of all existing malware.

 The techniques to deal with packers
 Generic unpacking

 Traditional emulator and DT. Hereinafter called emulator
 Slow
 Generic

 Static unpacking
 Specific

 Fast
 Long development time

 The hybrid approach

9

Unpacking: Status Quo

 Introduction

 The Inherent Ability
of VM to Defeat
Emulation
 Case Study

 VM To Dominate
Packers

 Pervasive VM Defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

10

VM Defeats Generic
Unpacking :

The Inherent Ability of
VM to Defeat Emulation

 The emulators suffer resource exhaustion when
trying to run through virtualized packers.

 Time to emulate a sample packed by a virtualized
packer is often too long to tolerate, especially for on-
access scan.

11

VM Defeats Generic Unpacking

 Introduction

 The Inherent Ability of
VM to Defeat Emulation

 Case Study

 VM To Dominate Packers

 Pervasive VM defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

12

Case study:
Themida VM

Implementation

 Patterns are widely used in virtualized /
obfuscated packers, including Themida.

 What’s a pattern?
 An Instruction snippet

 Used repeatedly

 Makes analysis hard

 Equivalent to a shorter instruction snippet

13

Case Study: Themida - Patterns

 Junk Pattern
 Does nothing and can be removed safely

 Instruction-level pattern
 Is equivalent to a single instruction

 Can be replaced by its equivalent instruction

 Function-Level Pattern
 Equivalent to a shorter instruction snippet

14

Case Study: Themida
Types of Patterns

Example: Function-level pattern

 Rule1: The instruction snippet should be equivalent to a shorter one
 Rule2: The instruction snippet should not contain any instruction snippet that can be

defined as another pattern. The principle can be named as MINIMAL principle.

15

Case Study: Themida
Rule to Define Patterns

 Applying patterns to obfuscate VM handlers
 For each instruction to obfuscate in a handler, an equivalent instruction-level

pattern is chosen randomly to replace, and then do the same thing for the new
code snippet

Example: Apply patterns on the instruction PUSH EAX:
 Round #1: Assume choosing the pattern to replace the instruction PUSH EAX
 PUSH IMM
 MOV [ESP], REG -> PUSH REG
 The instruction will be replaced as
 PUSH EAX -> PUSH IMM
 MOV [ESP], EAX

 Round #2: Assume choosing the pattern to replace the instruction PUSH IMM
 SUB ESP, 4
 MOV [ESP], IMM -> PUSH IMM
 The instruction snippet will be extended to:
 PUSH EAX ->PUSH IMM -> SUB ESP, 4
 MOV [ESP], EAX MOV [ESP], IMM
 MOV [ESP], EAX

 Round #3: The instruction SUB ESP, 4 will be replaced by a randomly chosen pattern, and so on.

16

Case Study: Themida
Apply Patterns at Packing Time

 Obviously, the implementation
mechanism makes it easy to extend
the instruction number of a handler
to 1M or more. This will defeat
generic unpacking easily

17

Case Study: Themida
The Ability of Anti-Emulation

 In the early days, signature-based approach was used to detect viruses

 Malware authors adopted the polymorphic technique to counteract the
approach.

 Emulation technique was used to solve the polymorphism issue.

 Malware authors adopt virtualization technique to defeat emulation.

 Virtualization technique tips the balance of power toward malware
authors. What is the next story?

18

VM Tips the Balance

 Introduction

 The Inherent Ability of VM
to Defeat Emulation
 Case Study

 VM to Dominate
Packers

 Pervasive VM defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case Study:
Asprotect stolen code & its
VM

19

VM to Dominate Packers

 Virtualized packers do not occupy a dominant
position currently in packer distribution.

 There is an upward trend in the prevalence of
virtualized packers in packer distribution.

 Virtualization is becoming a must-have for new
developed packers, existing packers are adding
the virtualization function.

20

VM to Dominate Packers

 What if the open-source packer, UPX, the most popular,
statistically, adopts VM techniques

 Open-source VM engine

 VM generator
 Users just need to define syntax of VM instructions.

 It can be predicted reasonably that more and more malware
authors will adopt virtualized packers, either existing virtualized
packers or custom virtualized packers written by the malware
authors themselves, in order to protect their “works” in the near
future.

21

VM to Dominate Packers

 Introduction

 The Inherent ability to
defeat emulation
 Case Study

 VM To Dominate Packers

 Pervasive VM Defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

22

Pervasive VM Defeats
Static Unpacking

 Static unpacking development focus on the packers that
 Cannot be emulated
 Takes a long time to emulate
 Significant performance improvement because of prevalence

 It is still feasible to develop a static unpacker for limited number of prevalent packers,
but …

 We may not have enough resources to analyze and optimize numerous unknown
virtualized packers even with the help of de-obfuscation tools.
The prevalence of custom virtualized packers will make static unpacking
techniques unfeasible.
 For example, it took several months to implement Asprotect static unpacker because there are more

than 160 versions. Asprotect has a long history. But for custom packers, you will find 160 versions in
a shorter period.

23

What About Static Unpacking

 Introduction

 The Inherent Ability of VM
to Defeat Emulation
 Case Study

 VM To Dominate Packers

 Pervasive VM defeat Static
Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case Study:
Asprotect stolen code & its
VM

24

Countermeasure
Strategic improvement
Technical improvement

 AV is passive now

 Collaborate with commercial packer vendors

 Get help from the published application vendors
 If they adopt VM/obfuscation techniques in their applications

25

Strategic - Change the Ecosystem

 Blacklist all samples packed with unlicensed commercial
packers(Shareware)

 Blacklist licensed packers used in malware

 Blacklist all samples packed with pirated commercial
packers.
 Currently, some AV vendors collect the licensed info of samples to determine if they are

packed by a pirated packer in their own way. We need a more robust, consistent
mechanism to identify the pirated packers.

26

Strategic - Commercial Packers

27

Strategic - Commercial Packers

Teddy Rogers is the site administrator of www.tuts4you.com

28

Strategic - Commercial Packers

Packer vendors should have
motivation to provide more
help 

 Report to White List Association

 Digitally sign their applications

29

Strategic – Handling VM Apps

 Most prevalent virtualized commercial packer
It is worth investing in
 Developing static unpacker

 Asprotect static unpacking: including restoring virtualized x86 instructions,
recovering stolen OEP, stolen functions, missing Delphi init/term table etc, the
unpacked file can run normally
o See also: Bonus slide: Case Study: Asprotect stolen code & its VM

 The hybrid approach of generic unpacking and static unpacking. Implement VM statically on
the basis of emulation.

 Themida: recover virtualized x86 instructions

 Numerous unknown virtualized custom packers.
 Generic unpacking, static unpacking and the hybrid will fail.

30

Technical – Invest in Unpacking

 If emulator cannot run through, maybe we can adopt
the combination of full-fledged emulation technique
and behavior analysis.

 Full-fledged emulator will defeat the anti-emulation and virtualized
code

 APIs will just use to record behaviors.

 This should be an additional component.

31

Technical – Deal with Unknown

 Introduction

 The Inherent Ability of
VM to Defeat Emulation
 Case Study

 VM To Dominate Packers

 Pervasive VM defeats
Static Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

32

False Positive

33

An interesting Note on PECompact

It implies at least two things:
There are a few false positives
There are false positives, even for compressors

 Even now, we can find many false positives.
 These false positives may be due to packer blacklisting. Some in

the industry may argue that the benefits for protection
overweigh the harm caused by FPs. Users may disagree.

 Industry likely continue to see false positives of
this sort in the future.

34

False Positive

 It will be much more difficult to avoid false positive
completely when adopting behavior analysis techniques

35

False Positive

 Many Web-based application/platform available

 Security issues continue to concern people, because
they will lose control of their information in the
cloud computing environment.

 But cloud computing might be a way to defeat
rampant virtualized viruses on the desktop.

36

A Word on Cloud Computing

 With the prevalence of virtual machine protection
techniques, AV industry might be at a turning point

 We may need to take a more active strategy

 We need new techniques to deal with virtualized
packers, just like adopting emulation technique to
deal with polymorphic viruses.

37

Conclusion

38

Thank You
jimwan@microsoft.com

 Introduction

 The Inherent Ability of VM
to Defeat Emulation
 Case Study

 VM To Dominate Packers

 Pervasive VM defeats Static
Unpacking

 Countermeasure

 False Positive

 Bonus Slides – Case
Study: Asprotect stolen
code & its VM

39

Bonus Slides:
Case study: ASProtect
stolen code & its VM

 There are four VMs in Asprotect.
 Two of them are used to protect critical functions

 One is used to protect stolen code

 One is used to protect advanced import protection(AIP)

 Two completely different implementations
 Soft CPU to protect critical functions

 Standard VM to protect stolen code & Advanced import protection(AIP)

40

Virtual Machines in ASProtect

 The original code snippet is placed somewhere else in the file or a
dynamically allocated memory

 A JMP instruction to the stolen code is inserted at the beginning of the
original code snippet

 The stolen code is often protected using obfuscation technology

 Stolen OEP(Original entry point) is a special case

The address of stolen OEP is often computed dynamically

41

What’s Stolen code

 Missing functions. Some functions are replaced by equivalent obfuscated
code snippets

 The function to process the init table in Delphi applications is replaced by
an obfuscated code snippet and the init table is destroyed.

 The OEP and the licensed functions are stolen in a much more
complicated way.

42

Asprotect Steals Many Code in Different Ways

 Six steps:

 Scan the OEP code and generate new basic blocks for CALL, JMP & JCC instructions

 Obfuscate the OEP code snippet

 Use many different de-optimization techniques, such as def-use chain, const expand, junk patterns, etc.

 Divides the obfuscated code snippet into different block randomly

 Virtualize some special instructions, such as JCC/JMP, CMP, etc

 Encrypt the return address of the CALL instructions inside the code snippet

 Encrypt the obfuscated stolen OEP code

43

How ASProtect Steals OEP code

 The reverse process to recovering the equivalent OEP code snippet is as follows:

 Decrypt the obfuscated code snippet

 Recover virtual machine emulated instructions, including CALL instructions

 Generate correct return address for the emulated CALL instructions

 De-obfuscate the code snippet
 Scan the code snippet and generate the intermediate representation for each instruction
 De-obfuscate based on the IR format instructions
 Generate opcode for de-obfuscated instructions, in IR format

 Compute target addresses of CALL/JCC/JMP instructions

 Generate opcodes for all de-obfuscated instructions

44

How to Recover Stolen OEP

45

An Example
The original entry point of ATTRIB.EXE in XP

 The routine to decrypt the stolen OEP

46

Decrypt Routine

47

Decrypted Stolen OEP

48

Emulate Special Instructions

The virtual machine technique is used to emulate
some special instructions

49

Recovered OEP code

50

Comparison

51

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S.

and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because

Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any

information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS

PRESENTATION.

