DIGITAL GENOME MAPPING -
ADVANCED BINARY MALWARE

ANALYSIS

Ero Carrera and Gergely Erdélyi
F-Secure Corporation Anti-Virus Research Team,
Tammasaarenkatu 7, 00181, Helsinki, Finland

Tel +358 9 2520 0700 ¢ Fax +358 9 2520 5001
Email ero.carrera@f-secure.com e
gergely.erdelyi@f-secure.com

ABSTRACT

Windows binary malware has come a long way. Today’s
average worm is often tens or hundreds of kilobytes of
code exhibiting a level of complexity that surpasses

even some operating systems. This degree of complexity,
coupled with the overwhelming flow of new malware,
calls for improvements to tools and techniques used

in analysis.

Our paper elaborates on how to use graph theory to aid the
analysis. Using graphs and extensions with the popular
Interactive Disassembler Pro package, we hope to reduce
the time needed to understand the structure of complex
malware. These methods have proven to be helpful in
finding similarities and differences between different
malware variants and strains.

Focusing on the differences by keeping off already known
code allows rapid analysis and classification of malware,
while reducing redundant efforts.

1. INTRODUCTION

Nowadays, reverse engineers — especially those within the
anti-virus and forensics industries — face the challenge of
identifying and analysing a large number of binaries
appearing at an incredible rate.

Some of the difficulties analysts face are:
* The sheer number of samples to check.
* The amount of code to analyse on each of them.

* Recognizing variants and versions of families of
malware and other software.

Most of those problems can be solved with proper
automation and algorithms. Ideas and results from
prototypes will be presented in this paper. We are
introducing a new platform based on Interactive
Disassembler Pro and the Python programming language.
The aim is to aid development of research prototypes and
advanced analysis.

The resulting tools will be targeted to recognize similar
features in the structure of executables. The theoretical
base we rely on to achieve our objective will be graph
theory, by looking at representations of code in the form of
graphs. With them, the necessary level of abstraction is

DIGITAL GENOME MAPPING

achieved and general features in the structure of a binary
become distinguishable.

2. PROGRAMMING IDA PRO

People who perform analysis of binary code tend to collect
and use a large arsenal of different tools. Apart from a
good hex editor, probably the most commonly used tool is
Interactive Disassembler Pro (IDA) [1]. IDA has earned its
reputation by being extremely versatile, flexible and
extensible. The already remarkable set of features IDA has
can be further expanded with the built-in script language
and compiled plugins. In the next section we will take a
brief look at both extension methods.

2.11DC

The easy way to get started with IDA programming is
IDC, the scripting language of IDA. The syntax of IDC is
very similar to ANSI C, which makes it familiar for
experienced C programmers. Unlike C, IDC is an
interpreted language which saves us from the tedious
write-compile-fix development cycle of C.

IDC comes with an extensive set of built-in functions that
cover many aspects of the disassembly process as well as
the structure and data of the program being disassembled.
The semantics of all those functions are, not too
surprisingly, close to regular C functions.

The following simple program is an example of IDC code.
It is a trivial decryptor that uses XOR OxFF to decrypt a
zero-terminated ASCII string, starting from the current
cursor position.
#include <idc.idc>
static main ()
{

auto baseaddr;

auto key;

auto c;

baseaddr = ScreenEA();
key = OxFF;
while (1)

{
c = Byte(baseaddr) ;

if (¢ == 0) { break; }
PatchByte (baseaddr, c ~ key);
baseaddr++;
}
}
2.2 Plugins

In case the required code exceeds the capabilities of IDC
we can resort to writing an IDA plugin. The SDK comes
with IDA and defines an extensive API for plugins. Unlike
IDC the API gives access even to the most intimate details
of the IDA database and all other aspects of the
disassembly. IDA plugins can be incredibly powerful with
this level of control.

Plugins are developed in C++ and can be compiled with
Borland, Microsoft, Watcom or GNU C++ compilers.

187

188

DIGITAL GENOME MAPPING

Since the code is compiled to native binary, the execution
speed is similar to any other native application. The main
disadvantage also comes from the need of compilation
which makes the development tedious. Another problem is
that a small bug can crash the whole IDA application,
possibly corrupting the database. The following example
shows the plugin implementation of the XOR decryptor
with all the plugin administration code stripped.
void decode (void)
{

ea_t baseaddr;

uchar key;

uchar c;

baseaddr = get_screen_eal);

key = O0xFF;

while (1)

{
c = get_byte(baseaddr) ;
if (c == 0) { break; }
patch_byte(baseaddr, c ~ key);
baseaddr++;

}

The look of the code did not change much. The IDA API
functions have somewhat longer names and more specific
purpose than the IDC counterparts. To implement certain
IDC functions, often several IDA API calls and data
conversions have to be made.

3. NEED FOR CHANGE?

What is wrong with IDC and plugin writing? Generally
speaking nothing. Either of them would be suitable to
implement anything that can be implemented with the help
of IDA. On the other hand there are other points to
consider here. The undisputed dominance and popularity
of C and C++ does not automatically mean that they are
the optimum choice for every task. The lack of complex,
abstract data structures make C unsuitable for rapid
development and prototyping. Without trying to start a
language debate we can also note that the extensions of
C++ over C do not have the easiest to remember syntax
either. C and C++ put efficiency over expressiveness,
which certainly made sense when computing power was
more expensive than programmers’ time. However with
computing horsepower getting cheaper and cheaper it does
not sound so crucial any more to spare clock cycles at the
expense of human productivity.

‘What would be a better tool then?

Before jumping to conclusions it is necessary to examine
the most common practical applications of IDA extensions.
As far as we can tell the two most common are:

e experimental reverse engineering tools
* quick tools for malware analysis.

Experimental tools evolve quickly, which clearly benefit
from a development environment that supports frequent
code and interface changes. The programming language
and the tools must not limit the researcher’s ability to
significantly change the code whenever it is needed.

Code written for malware analysis purposes usually solves
a single problem and, typically, it is not reused. Decryptors
written for different malware’s string scramblers are a
good example of this group. According to our experience
these tools cannot be fully reused too often as malware
changes very rapidly, even in the same family.

In both cases the time required for development is more
important than execution speed. The above observations
lead us to the conclusion that we need to find a language
which is very expressive, allows rapid prototyping and is
embeddable into applications. Modern, very high-level
scripting languages can easily fulfil these requirements.
After the evaluation of several modern scripting languages
our choice was Python.

3.1 What is Python?

Quoting from the Python website:

“Python is an interpreted, interactive, object-oriented
programming language. It is often compared to Tcl, Perl,
Scheme or Java.

“Python combines remarkable power with very clear
syntax. It has modules, classes, exceptions, very high level
dynamic data types, and dynamic typing. There are
interfaces to many system calls and libraries, as well as to
various windowing systems (X11, Motif, Tk, Mac, MFC).
New built-in modules are easily written in C or C++.
Python is also usable as an extension language for
applications that need a programmable interface.” [2]

Even though Python’s history started over a decade ago it
has gained mainstream recognition only quite recently.
The language is continuously evolving yet Python
developers have been able to maintain excellent backward
compatibility with older source code.

One slogan of the Python movement is: “Batteries
included”. For most tasks all the required modules are
included in the standard distribution. These modules range
in functionality from simple data handling to server
application components. A large number of third-party
modules are also available, from simple utilities to
scientific computing and number crunching.

3.2 Why Python?

Python has many properties that make it well suited for
our needs. It is easy to learn — anyone with prior
programming experience can pick it up really quickly. For
newcomers an excellent tutorial is available on the Python
website [3].

The language is object-oriented and supports different
abstract code and data structures which make it easy to
express complex algorithms. Python has built-in support
for lists, dictionaries (hashes) and tuples. Using these,
algorithms that would take several pages in C can be
expressed in just a few lines. This provides a perfect
playground for trying out ideas. If one of the ideas does
not work out the code can be thrown away without the
slightest feeling of regret. The same thing is much more

painful after the effort of chasing down all the pointers and
off-by-one errors.

Of course, just like anything else, Python has some
disadvantages too. Most notable is execution speed. The
programs are interpreted and sometimes run 2-20 times
slower than the C/C++ implementations. Where the
execution speed is a primary factor Python might not be
the optimal choice. On the other hand Python is extremely
easy to extend with C/C++ code. In most cases careful
separation of computationally intensive parts into C/C++
extension modules solves the performance problem.
Another way of speeding up Python code is the use of
Psyco [4], which is a Just-In-Time (JIT) compiler that can
achieve significant speedup depending on the type of

the code.

4. MEET IDAPYTHON

Our attempt to make the raw power of IDA more
accessible with a user-friendly, very high-level language
resulted in the birth of IDAPython. Implementation-wise
IDAPython is an IDA plugin which wraps the IDA API
and connects it to the Python environment as an extension
module. Scripts run inside IDA have access to both the
IDA API and all installed Python modules.

IDAPython consists of several modules, organized in three
layers:

1. Low-level IDA API wrapper layer
2. IDA API user layer with class definitions
3. IDC-compatibility and utility modules

The following figure illustrates the structure of
IDAPython:

User program

Y
IDC module

Y

Idautils module

y Python and
third-party
modules

idaapi module

_idaapi module

Figure 1. IDAPython organization.

4.1 Low-level wrapper layer

The low-level API layer is a direct Python wrapper around
the IDA API. This module is statically linked into the
IDAPython plugin and can be imported with the name
‘_idaapi’. The wrapper code is generated by Simplified
Wrapper Interface Generator (SWIG) [5]. _idaapi directly
reflects the C++ IDA API, functions have the same name,
same arguments and return values. The IDA SDK
documentation, with few exceptions, is directly applicable
to the Python wrappers as well — although changes had to
be made where the C++ semantics are significantly

DIGITAL GENOME MAPPING

different from the Python. These differences from the
official IDA API are documented in the plugin package.
The differences mostly concern functions that return data
in their arguments or use complex or unusual arguments.
For example:

IDA C++ API version:

char *get_func_name (

ea_t ea,

char *buf,

size_t bufsize);
The C++ version expects the function address and a
pointer to the output buffer with bufsize size. It either
returns the address of the output buffer or NULL if an
error occurred. The idea of output buffer pointers is not
used in Python so we have to change the definition that
makes sense there as well.

Python _idaapi module version:
_idaapi.get_name (from, ea)

In the Python version the wrapper allocates memory for
the output string and returns either a Python string or
None if the function fails. Similar changes have to be
made to other functions too.

This module should not be used directly, all the functions
and data are available in the upper level module described
in the next section.

4.2 User layer

The user layer module is called ‘idaapi’ which is a thin
layer on the top of the ‘_idaapi’ module. It contains all the
functions and data from the module below and adds
Python class definitions for the wrapped C++ classes,
structures and unions. Using these classes complex data
structures can be accessed with the usual class.member
notation.

This is the module that most user programs that need IDA
API access should use.

4.3 IDC compatibility module

Since most experienced IDA users are familiar with the
IDC language a compatibility module has been developed.
All the IDC definitions are automatically imported from
the ‘idc’ module to provide a familiar environment for
people with IDC experience. It also makes porting of IDC
script to Python easier. The IDC module is developed with
maximum compatibility in mind, however there are certain
functions that have native implementation in the Python
libraries and thus were removed. In the current state over
half of the IDC functions have been implemented, the final
goal is to implement all functions that are applicable in the
Python environment.

4.4 |dautils module

To lift the burden of using low-level functions for
everything a new module was created. Idautils is a module
that contains assorted functions that wrap the most often
used low-level code. Examples include functions that

189

190

DIGITAL GENOME MAPPING

provide a list representation of result that could previously
be collected with *First() and *Next() type of calls and
complex loop conditions. The development of ‘idautils’ is
in progress and it will be extended with any functionality
that qualifies to be included. All the functions are
thoroughly documented with Python docstrings, so it is
easy to experiment with them. A simple example follows
in the next section to highlight the benefits of this module.

5. EXAMPLE

To demonstrate the advantages of the new approach we are
going to implement a relatively short program. The
purpose of the program is to enumerate all defined functions
in a given segment and list the places they are called from.
Typical output of the tool is something like this:

Function _start at 0x8048520
Function call_gmon_start at 0x8048544
called from _start (0x8048543)
called from .init_proc (0x804848e)
Function __do_global_dtors_aux at 0x8048570
called from .term_proc (0x8048741)
Function frame_dummy at 0x80485b0
called from .init_proc(0x8048493)
Function main at 0x80485e4
Function __libc_csu_init at 0x8048658
Function __libc_csu_fini at 0x80486a0
Function __i686.get_pc_thunk.bx at 0x80486f2
called from __ libc_csu_init (0x8048660)
called from _ libc_csu_fini (0x80486ad)
Function __ do_global_ctors_aux at 0x8048700
called from .init_proc (0x8048498)

This example is deliberately kept simple to focus on the
implementation and not the algorithmic behaviour.

5.1 IDC version

First we implemented the small program in IDC:
#include <idc.idc>

static main()

{

auto ea, func, ref;

// Get current ea
ea = ScreenEA();

// Loop from start to end in the current segment
for (func=SegStart (ea);
func ! = BADADDR && func < SegEnd(ea) ;
func=NextFunction (func)

// If the current address is function process it
_1)

if (GetFunctionFlags (func) !
{

Message (‘Function %s at 0x%x\n’,

GetFunctionName (func), func);

// Find all code references to func
for (ref=RfirstB(func);
ref | = BADADDR;
ref=RnextB (func, ref))
{
Message(’ called from %s(0x%x)\n‘,
GetFunctionName (ref), ref);

The source code does exactly what we want it to do but it’s
not too easy on the eyes. It might need more than one
glance to understand how it works, even after such short
time as going for a lunch break. One of the problems is the
C way of iterating through lists, which involves several
functions and loops with complex conditions.

5.2 Python version

The second version was implemented in Python using only
the idaapi module:

from idaapi import *

Get current

ea ea = get_screen_eal)

Get segment class

seg = getseg(ea)

Loop from segment start to end

func = get_func(seg.startEA)

while func ! = None and func.startEA < seg.endEA:
funcea = func.startEA
print ‘Function %s at 0x%$x’ % \
(GetFunctionName (funcea), funcea)
ref = get_first_cref_to(funcea)
while ref | = BADADDR:

print ‘ called from %s(0x%x)‘’ % \

(get_func_name (ref), ref)
ref = get_next_cref_to(funcea, ref)

func = get_next_func (funcea)
The syntax has been converted to Python which uses
indentation instead of braces for marking code blocks.
This program serves as a good example that a good choice
of the programming language itself does not warrant easy
to read source code. This version of the routine is still not
as clear and easy to understand as we would like it to be.

5.3 Python version with ‘idautils’

The last version of the script has been rewritten from
scratch to utilize both the IDC and idautils module.
from idautils import *

Get current ea
ea = ScreenkA()

Loop from start to end in the current segment

for funcea in Functions(SegStart (ea), SegEnd(ea)) :
print ‘Function %s at 0Ox%$x’ % \
(GetFunctionName (funcea), funcea)

Find all code references to funcea
for ref in CodeRefsTo (funcea, 1):
print ‘ called from %s(0x%x)‘’ % \
(GetFunctionName (ref), ref)

This version of the tool consists of six lines of effective
code which took two to three times more with the other
implementations. It is also much easier to understand than
the others. Although we are not suggesting that all source
will shrink to half its size, we are convinced that with the
help of well-written, high-level wrappers over the most
common functions code size and development time can be
reduced. The main advantage of IDAPython is that any of
the layers can be used even in the same code with certain
precaution. One does not have to sacrifice the direct
database access for IDC or the idautils package.

6. IDAPYTHON THE PLUGIN

6.1 Usage

Usage of the plugin is similar to IDC. Python code can be
executed by either loading it from a file or entering it into
a Python expression window. The latter is only suitable for
experiments with short Python statements. Possibility to
save the session could be added in the future as time
permits. Future enhancements to the user interface might
include features like a fully interactive Python session
inside IDA. Unfortunately it is not possible to implement
that with the current IDA API.

The following screenshot shows the Python expression
window:

public _start
proc near
X

or ebp, ebp
pop esi

Figure 2. Example session.

6.2 Status and availability

IDAPython is under heavy development, yet in an
advanced state already. The plugin is used in-house by the
F-Secure Antivirus Research Team on a regular basis.
More improvements and testing are in the works. By the
time this paper is published the first feature complete
version of the IDAPython plugin will be released at
http://www.d-dome.net/idapython/. The package will
include the full source code and can be used for any
purpose, free of charge. The reader is invited to try it out
and provide much valued feedback. Improvement ideas,
code and other contributions are most welcome.

7. INTRODUCING GRAPHS

7.1 Previous work

Far from being a seminal work, this paper attempts to raise
the importance of clear and visual methods of analysis.
Halvar Flake is a distinguished figure in the binary reverse
engineering world, he has been using graphs and similar
comparison metrics as used here in specific steps of our
algorithm, aiming at tools which find differences between
different versions of a given binary. Flake’s work [6]
elaborates on the use of graphs for malware analysis and
exposes some of the advantages that we will reintroduce in
this paper.

DIGITAL GENOME MAPPING

7.2 The proposed approach

Graphs have always provided a clear way of looking at
problems. Complex hierarchies instantly become easier to
understand once they are represented in a way humans
find easy to assimilate. Graphs are one such way of
displaying data, instead of more cumbersome
representations like endless lists of numbers and
references to code and data as provided in a traditional
disassembly.

Additionally, a rich literature already exists on graph
theory with algorithms to treat and analyse them. Once we
are consistently representing code as graphs, a door is
open to know mathematical methods for analysis and
further topics such as clustering.

In this paper we will be representing code as graphs on
global and function levels.

Graphs provide abstraction, and that is exactly what
enhances the ability to build simple algorithms to work on
top of them.

7.3 Preparing the data for analysis

7.3.1 Exporting the data

A tool was created to export IDA databases to a
metalanguage representation, after a given binary has been
loaded into IDA. This tool does not export the whole set of
information supported in IDA’s database format, but a
sufficient subset including:

e Every defined function.

* Every instruction. The full binary representation,
mnemonic and operands as presented by IDA to
the user.

¢ All the defined referenced strings and names.
e All code references.

e Code flags: whether the code is flow (useful to
coherently extract the basic blocks of a function).

e Miscellaneous flags: whether a function belongs to a
known library or is a thunk.

All this information has been found to be enough to
provide a fertile playground for our research. Future
additions will include all comments in order to add as
much high-level readable information as possible.

The name REML was coined for the resulting
metalanguage file, standing for Reverse Engineering
Meta-Language, or RevEngML.

7.3.2 Interfacing the data

The next step was generating an object-oriented
framework, focusing on usability and ease of use, while
giving lower priority to performance issues.

A Python module was created to work on the REML files.
The module implements a top Binary class, which

191

192

DIGITAL GENOME MAPPING

provides methods to access the generic binary information
such as the entry point to the code and the list of its
functions. It is also possible to query functions by their
names or addresses in their body.

Subsequently, an extensive Function class was
implemented. Among others, it provides the following:

» Access to all the instructions.
* Ingoing and outgoing code and data references.

¢ Generation of the list of basic blocks from which to
generate a CFG (Control Flow Graph).

A third, smaller class, was added under the rather
unoriginal name Instruction in order to access the
instructions and their operands.

7.3.3 Processing the data

Our research and prototypes lie on top of the interface we
created in order to access the data. It gave us, among other
possibilities, that of quickly generating graphs from a
binary. In a fairly small number of lines (as compared
with IDA’s IDC language) we could iterate over the whole
set of functions, gather their references and create a graph
object [7].

We took the approach that every single function in a
binary is represented by a vertex in the graph and calls
between them translate to the graph’s edges.

(LECF Y Mevud B Mevaw O
lelwramd [Riavosd E v F
Movanl T hrragi b Mhorvgmi |
L] Wi L Lrramt W

Figure 3. Mimail family graphs. Certain patterns can be
appreciated between members of this family.

The plotting algorithms and style were fine tuned, over
some initial testing period, until we achieved
understandable representation of rather complex and
extensive binaries.

Two main modes of visualization were found to provide
good results. A hierarchical representation provides good
results for binaries up to certain number of functions; this
layout is provided by the GraphViz’s dot.

A second, radial layout (Figure 3), was obtained through
GraphViz’s twopi, which proved to be useful to visualize
larger cases.

After the initial visual advantages of graphs, exploiting
their mathematical properties became the target of our
efforts. This is the topic of the next section.

8. ALGORITHMS BASED ON GRAPH
REPRESENTATION OF BINARIES

8.1 Binary comparison, graph similarities

In this section we will address the process of finding how
close two binaries are to each other. The result of our
algorithms will be a value indicating how much of their
call flow graphs overlap or relate to each other.

Once we have such values, we are in the position of
attempting to perform classification of malware by their
similarities. Borrowing from the field of Phylogenetics [8],
we will apply clustering analysis algorithms in order to
obtain a taxonomy of the malware at hand. The results
from this approach are encouraging, indicating an area of
research which should be explored further.

8.1.1 The comparison algorithm

Given the graph representing the binary under analysis, we
will create its adjacency matrix. This matrix will have a
row and column for each of the functions present in the
binary, and its element in position (/, J) will indicate
whether a function in row / performs a call to the function
in column J.

The objective we pursue is to be able to relate functions
from two executables based on their position in the graph
resulting from the connections among all the functions. A
function which calls and is called by a given set of
functions, is matched against another with a similar set of
called and caller functions.

Finding graph isomorphisms is known to be a fairly
complex task, no polynomial time algorithm is known to
solve this problem. Fortunately, the problem at hand is
much simpler as we have more information to put into
our model.

To define a basic set of nodes from which to start, we
choose operating system and library calls. In other words,
any function which does not perform a further call to code
belonging to the binary and which will have a common
name across different executables. With this approach we
automatically rule out binaries which do not call any such

functions, although it would be still applicable if a
researcher would manually find a basic set of common
functions between two binaries and name them accordingly.

Once we have a set of commonly named functions on two
different binaries, we compose an adjacency matrix and
suppose as identical the functions with identical unique
rows in this matrix.

We incorporate the information gained in each pass and
rerun the matching, effectively progressing through the
graph, until a maximum of functions is matched.

Additional optimizations have been put in place when
ambiguities arise, as function matching according to
metrics calculated from their internal structure.

After the process in finished, we have a set of functions
common to both binaries.

8.1.2 Definition of the algorithm

* We have two executables’ graphs which we want to
compare. A source S and a target one 7. We define the
following:

- S, = {set of all functions composing S}
=T, = {set of all functions composing T}

* Find the common set of atomic functions [9]. That is:
C={f:feSsnT;}

e We define S, = S-C and T = T—Cas the sets of
remaining functions to be matched.

* Now, for f € S,we create a call-tree signature [10] for
ffrom C and consider it identical to f’ € T, if the
signature of f’generated from C is identical and
unique.

—If such match is found we augment the C matrix
with the signature of f. which will allow us to match
higher level functions not necessarily relying on AP/
functions.

Once this algorithm does not yield any more matches,
we will have a matrix C containing all the functions
occupying the same positions in the graphs of both §
and 7. At the end of the process we will have
unmatched functions of two types.

1. The ones which are different and can not be
matched.

2. Functions which do not have unique signatures.

In a further development of the algorithm we enhanced its
matching capabilities by using a new kind of signature,
namely the list of edges connecting basic blocks from the
functions CFG (CFG signatures). Functions with
non-unique call-tree signatures can be matched if unique
CFG signatures exist.

We implemented this enhancement to be run every time
we exhaust the call-tree signatures. Finding some
correspondences between functions will often lead to
additional matches in further passes of the algorithm. This
has successfully increased the accuracy of our method.

DIGITAL GENOME MAPPING

8.1.3 The index of similarity

Once we have a set of supposedly equivalent functions
between both binaries, the index of similarity is obtained
as follows.

Let’s call the set of equivalent functions in the source
binary S, S, = {equivalent functions in S} and similarly
define T, = {equivalent functions in T}, note that both sets
contain the AP/ calls found to exist in both binaries. Let
o'(Se,Te.) denote the similarity index function and be
defined as: A

ol(A,B) =

- [AUB]|

which leads to the non-symmetric similarity indexes (or
distances):

18] T
o1(Se, Te) = m and o/(T.,Se) = m
we define a final combined similarity as:
|Al-|B|
A, B — T T =

This function, o(A, B) will always yield a value between
0 < o(A,B) <1 .With values close to 0 indicating a low
degree of resemblance, and values near 1 for pairs of
malware which share almost all of their code.

8.1.4 Case studies

We will now give the distance matrices for different
families of malware, the values are percentages indicating
how close the malware was found to be to each other.
Here we will follow the procedure introduced in the
previous section.

Mimail
The Mimail family exhibits high indexes of resemblance,
as can be seen in the following distance matrices.

‘mimailﬂ mirmail.b mimail.c mimail.d mimail.e mimail . f

mimail.a 0 90.8 85.4 87.4 75.0 75.0
mimail.b 90.8 0 84.7 88.0 74.3 74.3
mimail.c 85.4 84.7 0 81.5 81.3 81.3
mimail.d 87.1 88.0 81.5 0 72.3 72.3
mimail.e 75.0 74.3 81.3 72.3 0 95.4
mimail. f 75.0 74.3 81.3 72.3 95.4 0

‘ mimail.h mimaild mimail.j mimaill mimailom mimail g
miarmail.ly 0 81.7 83.2 90.9 88.8 41.6
mimail i 81.7 0 95.0 81.7 79.9 46.9
mimail.j 83.2 95.0 0 83.2 81.3 47.8
mimail 1 90.9 81.7 83.2 0 90.3 42.4
mimail.m 88.8 79.9 81.3 90.3 0 40.6
mimail.q 41.6 46.9 47.8 42.4 40.6 0

Klez

The Klez family comparison also yields good results. The
classification splits the samples in two branches, one
containing Klez variants A, B, C and D, and a second one
with E, F, G, H, I and J, see Figure 4.

klez.a klez.b klez.c klez.d Fklez.e
klez.a 0 79.6 70.3 70.3 49.3
klez.b 79.6 0 73.4 73.4 49.3
klez.c 70.3 73.4 0 88.2 49.6
klez.d 70.3 73.4 88.2 0 49.6
kiez.e 49.3 49.3 49.6 49.6 0

193

194

DIGITAL GENOME MAPPING

klez.f klez.g klez.h klez.i klez.j

klez.f 0 87.0 80.7 80.7 87.0

klez.g 87.0 0 80.7 80.7 87.0

klez.h 80.7 80.7 0 89.6 80.7

klez.i 80.7 80.7 89.6 0 80.7

klez.j 87.0 87.0 80.7 80.7 0
Netsky

The large family of Netsky appears clustered together as
well. A feature worth mentioning is the closeness to the
Sasser family, which was created by the same author. Such
resemblance yields high indexes of similarity with our
algorithm, given the fact that the author used common
code in both families. See Figure 4.

netsky.aa netsky.ab netsky.ac netskyl netsky.n
netsky.aa 0 75.8 39.9 56.1 49.0
netsky.ab 75.8 0 40.2 64.3 50.6
netsky.ac 39.9 40.2 0 31.2 26.6
netsky.l 56.1 64.3 31.2 0 43.1
netsky.n 19.0 50.6 26.6 13.1 0

netsky.s netskyw netskyv netskyw netsky.x
netsky.s 0 82.5 69.5 52.6 70.6
netsky.u 82.5 0 74.7 50.8 69.6
netsky.v 69.5 74.7 0 46.5 60.6
netsky.w 52.6 50.8 46.5 0 48.5
netsky.x 70.6 69.6 60.6 48.5 0

Roron

The Roron family is tightly clustered together given the
values in distance matrix generated from the graphs. See

Figure 4.
‘ Toron.ac roron.ad roroin.ae roron.k roron.p roron.q roron.r
roron.ac 0 85.0 83.7 63.2 85.1 85.1 84.9
roron.ad 85.0 0 84.6 62.9 83.5 83.9 84.1
roron.ae 83.7 84.6 0 62.2 82.3 82.7 82.9
roron.k 63.2 62.9 62.2 0 64.1 63.3 63.2
roron.p 85.1 83.5 82.3 64.1 0 86.2 86.0
roron.q 85.1 83.9 82.7 63.3 86.2 0 87.7
TOrON.T 84.9 84.1 82.9 63.2 86.0 87.7 0
roron.s roron.d Toron.u TOron.w Troron.w roron.r
roron.s 0 84.8 85.8 85.0 84.8 86.2
roron.t 84.8 0 85.2 84.8 89.3 85.2
roron.u 85.8 85.2 0 85.9 85.6 84.6
roron.v 85.0 84.8 85.9 0 85.2 84.6
roron.w 81.8 89.3 85.6 85.2 0 85.2
roron.x 86.2 85.2 84.6 84.6 85.2 0

Bagle

| sasser.a sasser.b sasser.c sasser.d sasser.e

sasser.a 0 90.6 88.0 74.7 77.1
sasser.b 90.6 0 94.6 79.3 80.5
sasser.c 88.0 94.6 0 79.3 78.1
sasser.d 4.7 79.3 79.3 0 79.2
sasser.e 77.1 80.5 78.1 79.2 0

Random selections

We will now show some distance matrices of randomly
picked samples. We have previously shown families of
malware, which do not demonstrate well the case where

samples are different from each other. The following

data shows that unrelated samples yield low similarity

indexes.

roron.q mnetsky.s sober.f netsky.ac netskyd klez.i

roron.q 0 14.8 0.0 19.5 8.0 20.8
netsky.s 14.8 0 0.0 62.5 19.3 14.9
sober. f 0.0 0.0 0 0.0 0.0 0.0
netsky.ac 19.5 62.5 0.0 0 31.2 21.0
netsky.l 8.0 19.3 0.0 31.2 0 9.9
klez.i 20.8 14.9 0.0 21.0 9.9 0
netsky.aa mimail.h sasser.e sober.d mydoom.g sober.b

netsky.aa 0 0.0 22.7 0.0 0.1 0.0
mimail.h 0.0 0 3.5 0.0 4.9 0.0
SGSSET.E€ 22.7 3.5 0 0.0 4.9 0.0
sober.d 0.0 0.0 0.0 0 0.0 11.9
mydoom.g 0.1 4.9 4.9 0.0 0 0.0
sober.b 0.0 0.0 0.0 11.9 0.0 0
| klez.i bugbear.e klez.b roronaw bagle.i mydoom.k

klez.i 0 2.8 48.2 20.5 1.0 14.5
bugbear.c 2.8 0 2.9 2.0 0.5 1.8
klez.b 48.2 2.9 0 22.0 0.8 17.6
roron.w 20.5 2.0 22.0 0 0.6 13.8
bagle.i 1.0 0.5 0.8 0.6 0 0.6
mydoom.k 14.5 1.8 17.6 13.8 0.6 0
‘ roron.ad klezi bugbear.g mimail.b netskyu mimail.f

roron.ad 0 20.4 2.2 1.9 13.5 2.1
klez.i 20.4 0 2.9 2.4 13.9 2.4
bugbear.g 2.2 2.9 0 4.9 3.1 5.5
mimail.b 1.9 2.4 4.9 0 3.8 74.3
netsky.u 13.5 13.9 3.1 3.8 0 4.9
mimail. f 2.1 2.4 5.5 74.3 4.9 0

8.2 Possibilities, exploiting the acquired
knowledge

We will now discuss several techniques which benefit
from the foundations laid in section 8.1 of the paper. We
will briefly present several areas whose overall quality
improves by having some metric defining the degree of
similarity between malware. This also relates to which

The Bagle worms provide an example where the similarity
between certain variants is low. The reason for such results
is that some of the variants were just dropping a backdoor
and did lack their own replication system, actually
rendering them quite different form each other. The
algorithm successfully indicates such fact.

‘ bagle.ac baglei bagle.j bagle.k baglean baglew baglew bagle.x
bagle.ac 0 8.0 1.6 1.6 7.5 1.2 8.3 8.3
bagle.i 8.0 4.3 4.3 23.4 3.2 23.5 23.5
bagle.j 1.6 0 81.3 1.8 37.7 1.3 1.3
bagle .k 1.6 81.3 4] 4.8 377 4.3 4.3
bagle.m 7.5 4.8 4.8 0 3.6 22.8 22.8
bagle.w 1.2 37.7 37.7 3.6 4] 3.2 3.2
bagle.w 8.3 4.3 4.3 22.8 3.2 0 23.8
bagle.x 8.3 4.3 4.3 22.8 32 23.8 0

Sasser

Sasser is another sample of highly similar malware.

parts of two specific binaries correlate, proving similar or
the same functionality. Some of the techniques discussed
in this section have already been implemented and
preliminary results are available; others, although briefly
tested, lack a solid prototype.

8.2.1 Clustering and classification

Once we created a reliable method to find approximate
distances, or similarity indexes between binaries, we can
move into such area as classification. Philippe Biondi
demonstrated to one of the authors the results of applying
clustering algorithms, such as X-tree, to a previously
generated distance matrix of malware. Those encouraging
results fostered further research of the topic.

DIGITAL GENOME MAPPING CARRERA & ERDELY|

a-sasses
-1OSSES Locor
P 6901
o-sasses aasses 6360
56 -
quuosses 000 1St e
o167 a-81qos 1-81q0s
n-psiau A-fysiau x-Ayspou u-Kysiou neRysiou)
s s s . OpILE OLLTY
n ! S8 9E (353
s-ysiou 610°7T [
L7
€9¢
fruoiol A-tioior qu-kysiou [-Aysiou u-foysiou
s
909
o101 (350 0170C T
" e g [o e
s-u0s01
d-uosos
av-uosor Suoiol -
b-uosos » Ipo-xeqoq
uoopiu €079
X-uoior 690k 5T p-e-xeqoq ﬂoﬂﬁ
1L9°8T 556t WL
s-uolor o oy €y
weegek — EC L [—— 05T 0
010! £09° . y
i 00S°S 06 F-woopAur T www.wﬂ 2080
- uzapy T05S TEST £L091 690L 8050
e g
0059 (43 woopAU Aofdeq 95091
uoi01 155 520 ’
oo B) &0 1560 -
o1 L wwoopsu oot F-a18eq - LETO
rzan T 1zehy
g Seer [ygos - -
550 f-arseq 005°6 [y] 000°€E GLOTT .
oz Pzt TSy SLEY T
- 000°€€. -
0009 o8 - p-1aqos >13q05 . s
qwaqing ssLte . TI697
s, 0009 6T 081'L e
$-1vaq3ng - oLy .
- S0s xaiseq ©aqos oraiiey —
006°ST fAdsfuy .
qzapy . _ 79697 - y
9701 o-waging 00191 . 0058E Sl
- ol
6v88L M —Gose SEC0
TS0l b
vzapy 970
W e
s
Faw s-qrewm g
’ G6T6T e
wew JE———.11 01£9
19T a
6T
0LIS -
R - - tose
(553 650
G661
06T
[- e -
(053 D
S
0000 ¢
S 0057 P . 08T
' 91T
00ST 0000
- I
o-ewm 05T e _
' 705
6t

-[rRw

195

VIRUS BULLETIN CONFERENCE SEPTEMBER 2004

Figure 4. Phylogenetic classification of a group malware.

196

DIGITAL GENOME MAPPING

Recently Stephanie Wehner has done some work on
classification using techniques based on Kolmogorov
Complexity. Her preliminary results [11] show
classifications of worms into families without any
underlying analysis performed on the samples. This
approach is highly interesting when a fast classification
is needed.

Our approach is based on phylogenetics. An extensive
literature exists on that area on classification of taxa and
cluster analysis. A series of algorithms exist which can
be applied to distance matrices, that is, a square matrix
providing numbers expressing how similar two OTU [12]
or malware are to each other.

Algorithms such as Neighbor Joining [13] applied to such
matrices yield a hierarchical classification, which opens
the door to taxonomies of malware. New samples can
immediately be classified if a sample fulfilling certain
requirements is provided [14].

In the future, given a common algorithm agreed
beforehand, this procedure may aid in the classification
task and diminish the confusion caused by randomly
named malware. The existing approach in biological
sciences might prove of value, where popular taxa have
colloquial names, besides the purely scientific
classification.

Previous work [15] has already explored ways the
phylogenetic approach may help in computer virus
classification, although the metric used in that case was
byte sequences present in the malware file.

We believe that approach is limited, as even simple
polymorphic malware may result in no possibility of
application of the technique, let alone packed/encrypted
code.

While our approach currently faces similar restrictions if
aiming for completely automated analysis, we already laid
a base which yields acceptable results with a strong metric
such as the one provided by graph isomorphisms, see
Figure 4.

8.2.2 Helping quick analysis

The knowledge of which functions in two different
variants of malware are the same allows us to mine this
information, aiding in rapid analysis of threats of the same
family. Starting from an already analysed binary, the
possibility exists (although it is not implemented yet) to
mark certain areas on it, i.e. string references, registry
keys, port numbers; and track whether or not they have
been modified from one variant to the next. If such
modification took place, we could obtain the new values
and automatically generate the corresponding information
in form of a description for the general public.

8.2.3 Migrating analysis information
between code versions

Porting existing knowledge from the analysis of a variant
to a recently discovered one has proved to be a practical

and valuable tool. The knowledge of which functions map
from a binary A to a binary B allows us to rename all the
known code in the, yet to be analysed, new variant. In
some cases it allows us to start an analysis with 80-90 per
cent of the defined functions already meaningfully named.

This reduces the time needed for an initial overview
and enables us to focus on more important parts of the
code and algorithms and not just reanalysing previously
seen code.

8.3 Other aspects of code visualisation
using graphs

Recently we created a tool which allows us to browse

a disassembly by just looking, scrolling and zooming

a graph.

The main interface shows the whole defined call tree of
the binary, every function node containing a list of the
strings referenced from within it. Clicking in any of the
functions opens a new window, which shows its CFG
(Control Flow Graph) and in each basic block node, a list
of function and string references. Placing the mouse over
any of the basic blocks shows the corresponding
disassembled code.

More features have been added, i.e.:
¢ Rename functions
e Search functions in the graph
¢ Change visualizations modes (hierarchical or radial)

* Compare different versions of binaries (common code
is represented in red)

* Export the renamed functions as an IDC script to
rename them in the IDA DB.

The tool has allowed us, so far, to perform quick general
analysis of a binary. The holistic perspective provided is
really convenient when handling binaries with several
layers of abstraction, where the AP/ calls may lay some
levels away from the investigated function. In a
disassembler such as IDA, perceiving the logical position
and purpose of the function within the binary might be
nearly impossible without jumping to all the called code.
In a graph, that becomes trivial, as all those relations are
patent in one sight.

9 CONCLUSIONS AND FUTURE
DIRECTIONS

9.1 Limitations

Several limitations exist to a fully automated graph
generation, comparison and classification approach.
Malware is commonly packed and/or encrypted.
That represents one major inconvenience which must
be overcome before achieving our final goal of full
automation.

The graph creation and comparison algorithms are
architecture-independent. The only requisite is the

existence of such concept as calls (branching is acceptable
as long as IDA can recognize the functions).

The binaries must use AP/ services provided by the
operating system, and have a significant quantity of code.

9.2 Future directions

Further research in the classification of malware promises
to yield rewarding results. Some of the basic concepts
discussed in this paper should be extended.

9.2.1 Graph database

The creation of a graph database has not yet been
explored. In such a repository, the graph representation
and properties of a binary would be stored. Upon arrival of
newly discovered malware, the database would be queried
for certain patterns. If the search turns out positive results,
comparisons and posterior classification would be
performed automatically.

REFERENCES & NOTES

[1] Datarescue IDA page, http://www.datarescue.com/
idabase/index.htm.

[2] Python website, http://www.python.org/.

[3] Guido van Rossum and Fred L. Drake, Jr.: Python
Tutorial, http://docs.python.org/tut/tut.html.

[4] Psyco website, http://psyco.sourceforge.net/.
[5] SWIG website, http://www.swig.org/.

[6] Halvar Flake, ‘Graph-Based Binary Analysis’,
Blackhat Briefings 2002.

[71 We also created a python module, namely pydot, to
quickly generate and interact with appealing visual
layouts of graphs through AT&T’s renowned
GraphViz software. The python module is publicly
available at one of the author’s personal website,
http://dkbza.org/pydot.html.

[8] Phylogenetics: “Phylogenetics is the taxonomical
classification of organisms based on how closely
they are related in terms of evolutionary
differences.”

[9] By ‘atomic function’ we mean a function which
performs no further calls and has a common name
across different executables. In such way that it can
be considered to be a basic building block. In graph
theory they are the leaf vertices with indegree 1 and
outdegree 0.

[10] A signature for a function fis created by inspecting
the list of atomic functions, L , and creating a
binary string, containing a 1 in position n if f calls
the atomic function in the index n of L and 0
otherwise.

[11] S. Wehner, ‘Analyzing Worms using Compression’,
http://homepages.cwi.nl/~wehner/worms/

DIGITAL GENOME MAPPING

[12] In phylogenetics, the term OTU stands for
Operational Taxonomical Units and refers to
members of different species to be classified given
their evolutionary differences.

[13] N. Saitou and M. Nei, ‘The neighbor-joining
method: a new method for reconstructing
phylogenetic trees’, Mol. Biol. Evol. 4, pp406-425.

[14] The sample must be unpacked/unencrypted and
have a properly reconstructed import table.

[15] L.A. Goldberg, P.W. Goldberg, C.A. Phillips, G.
Sorkin, ‘Constructing Computer Virus

Phylogenies’, Journal of Algorithms, Vol 26(1) (Jan.

98) pp.188-208.

197

