
Abstract

The Kernel is the heart of modern operating systems. Code executing in kernel mode has full access to all memory including
the kernel itself, all CPU instructions, and all hardware. For this obvious reason only the most trusted software should be
allowed to run in kernel mode.

Today, we are facing an emerging threat in the form of kernel-mode malware. By kernel-mode malware we mean mali-
cious software that executes as part of the operating system having full access to the computer’s resources. To the end-user
this means malware that can bypass software firewalls and can be almost impossible to detect or remove even if the best
anti-virus solutions are being used.

This paper will examine the most important malware cases utilizing kernel-mode techniques over the last few years. The re-
search will be limited to malware running on Windows NT and later operating system versions. It will look at the possible
motives for the malware authors to move their creations to kernel mode. A detailed analysis of the key techniques making
their existence possible will be covered.

Kernel ��l��re�� ��e A������ �r��� �����n��l��re�� ��e A������ �r��� �����n�� ��e A������ �r��� �����n

Kimmo Kasslin
F-Secure

Kuala Lumpur
Malaysia

kimmo.kasslin@f-secure.com

AVAR 2006 - AucklAnd

In�r�du����n

A modern malware, backdoor, email-worm, spying tro-
jan, operating fully in kernel mode on a Windows NT-
based operating system is a scary thought. It would oper-
ate with same privileges and share all the same resources
as the operating system itself and compete with any se-
curity solutions protecting the systems integrity against
any malicious activities. This would end up in an arms
race between the malware and the security suite. The one
that is able to execute first or being able to control the
lowest parts of the operating system eventually will be
the winner. Usually, this means doing tricks that are not
documented or supported by Microsoft and will result in
version dependencies causing instability or even system
crashes in the worst case. This is a path any serious secu-
rity software vendor will not take. However, the world is
full of examples of malware and proof-of-concept code
that does exactly this.

This paper is about malware operating fully or partially in
kernel mode. It will discuss basic requirements for such
malware and survey the known and semi-documented
techniques that make it possible for malware writers to
enter into and operate in ring 0. The paper ends with ana-
lyzing two sample cases of malware that have played an
important role in opening eyes of the security community
to the threat kernel malware poses.

B�s�� Defin����ns

To have a better understanding of the topic the reader
should be familiar with some basic concepts of a modern
operating system. Terms such as processes, threads, vir-
tual memory and the difference between user and kernel
modes should be familiar to the reader. The most impor-
tant concepts, including important definitions to avoid
misunderstandings are introduced here.

kernel Mode vs. user Mode

One of the design goals for Windows NT was reliability
and robustness [34]. The main requirement was to protect
the kernel from external tampering by user-mode applica-
tions. To address this, the system was divided into two dif-
ferent modes of operation: user mode and kernel mode.
User applications run in user mode. They are unprivileged
processes with limited access to system resources. User-
mode processes access these resources controlled by the
kernel through services provided by the kernel.

Operating system services and third party drivers run
in kernel mode. In kernel mode, they have access to all

system memory, all CPU instructions, and all hardware.
The architecture of the Intel x86 processor supports four
privilege levels, or rings, numbered from 0 to 3. The great-
er numbers mean lesser privileges. Windows uses privi-
lege level 0 for kernel mode and privilege level 3 for user
mode.

To provide protection to the virtual memory, the OS
keeps track from which privilege level each memory page
can be accessed. Pages in system address space can be only
accessed from kernel mode, which protects them from
user-mode processes. Since code running in kernel mode
has full access to system memory, it can easily bypass any
security mechanism provided by the OS and destroy its
integrity.

Drivers run in kernel mode and third party drivers can be
installed and loaded with administrative privileges. This
is the only documented and supported way of executing
kernel-mode code. Other undocumented means do exist
and they are explained in more detail in a later section

For detailed information about the inner workings of
Windows NT-based operating systems the author recom-
mends the excellent book by Solomon and Russinovich
[34].

kernel Malware

Kernel malware is malicious software that runs fully or
partially at the most privileged execution level, ring 0,
having full access to memory, all CPU instructions, and
all hardware. It is convenient to divide kernel malware
into two subcategories: full-kernel malware and semi-ker-
nel malware.

Full-Kernel Malware
Full-Kernel malware is fully implemented as kernel-mode
driver and executes all its code in ring 0. It still requires
some help from user mode to get installed into the system
either by a dropper component or manually by the user.
Once the driver has been installed it will be able to oper-
ate by itself.

Semi-Kernel Malware
Semi-Kernel malware executes its code both in ring 0
and 3. This includes malware that consists of a user-mode
executable (EXE or DLL) that will drop a kernel-mode
driver or use other means to execute code in ring 0. Mal-
ware that is fully implemented as kernel-mode driver but
executes parts of its payload in ring 3, e.g. through code
injection, in the context of some process is also semi-ker-
nel malware.

AVAR 2006 - AucklAnd

H�s��ry �nd Trends �� Kernel ��l��re

Kernel-mode malware on Windows NT-based systems
is not a new phenomenon, they have just been rare.
WinNT/Infis [24], which was discovered in November
1999, was the first known full-kernel malware that was
designed to run on NT-based systems. It was a memory-
resident parasitic kernel-mode driver virus that gained
control by hooking the INT 0x2E interrupt handler
directly from kernel. This allowed it to monitor every
system service call made by user-mode applications and
to infect PE EXE files when an open request was made.
Win2K/Infis.4608 [35] added support for Windows
2000 and was found just one week after the new operat-
ing system was released.

Another documented case involving kernel-mode mal-
ware was Virus.Win32.Chatter1 [2][36], which was
found in January 2003. It was a kernel-mode driver that
infects only PE SYS files. It hooks nt!NtCreateFile from
nt!KiServiceTable and thus gets control on every file open
and create operation. However, its infection routine was
actually executed in user mode. Therefore it is a semi-
kernel malware. The driver copied itself into the address
space of the active process and used an undocumented
nt!KeUserModeCallBack function exported by the kernel
to execute the infection routine in user mode. This might
have been the first time for kernel malware to inject parts
of its payload from ring 0 to ring 3 to perform some more
complex tasks. This code injection from kernel to user
mode is an important concept and will be discussed in
more detail later in this paper.

Today the number of kernel-mode malware when com-
pared to the total number of malware seen every month is
very small. Also, it should be noted that the antivirus in-
dustry has not yet seen any complex malware that would
fulfill the requirements for full-kernel malware. To get a
better view of how real the threat posed by kernel mal-
ware is, it is important to find some evidence of real-life
malware samples using kernel-mode components.

Antivirus analysts who have been analyzing malware
samples since the beginning of 2005 should agree that
the number of malware using kernel components has
been steadily increasing. To get more proof of this trend
a statistical analysis was conducted. The author chose two
antivirus vendors and processed all monthly sample col-
lections from January 2003 to August 2006. On average
this resulted in around 100000 samples per vendor. The
idea was to find out how many kernel-mode drivers the

1. Also know as W32.Keck.1933 (Symantec) and W32/Chatter Also know as W32.Keck.1933 (Symantec) and W32/ChatterAlso know as W32.Keck.1933 (Symantec) and W32/Chatter
(McAfee).

sample collections had, meaning that they are either full-
kernel malware or parts of semi-kernel malware. In addi-
tion, the number of new malware families that use kernel-
mode drivers was identified. It is important to notice that
just looking for drivers will not include kernel malware
that use other means, like code injection or call gates, to
execute their code in ring 0. However, this would require
run-time analysis of the samples, which was not possible
to achieve within the given time frame.

Each sample in the monthly collection was first checked
whether it had a proper PE header. If the result was posi-
tive then additional tests were made against the optional
header field. Following basic checks were made to include
only samples that are possibly kernel-mode drivers for
Windows NT and later operating system versions:

Magic field equals IMAGE _ NT _ OPTION-
AL _ HDR32 _ MAGIC

Subsystem field equals IMAGE _ SUBSYS-
TEM _ NATIVE

MajorSubsystemVersion and MinorSub-
systemVersion fields were checked against the
correct platform and version information

In addition all duplicate files were removed by checking
their MD5 hash. The results are shown in Figure 1 be-
low.

0
10
20

30
40
50
60

70
80

Ja
n-0

3

Apr-
03

Ju
l-0

3

Oct-
03

Ja
n-0

4

Apr-
04

Ju
l-0

4

Oct-
04

Ja
n-0

5

Apr-
05

Ju
l-0

5

Oct-
05

Ja
n-0

6

Apr-
06

Ju
l-0

6

N
o.

sa
m

pl
es

0

1

2

3

4

5

6

N
o.

ne
w

fa
m

ili
es

Malware Families Vendor X Vendor Y

Figure 1. Number of malicious kernel-mode driver samples
found from each vendor collection per month. Also, in-
cludes the number of new malware families found to use
kernel-mode components.

Before discussing more about the results it should be
noted that there exists possible factors of uncertainty to-
wards the validity of the results. This is mostly related to
the quality of the data these results are based on. The au-
thor is not trying to imply that there is anything wrong
with the collections, it is just a known problem in the
antivirus industry that proper classification and naming

■

■

■

AVAR 2006 - AucklAnd

of malware is impossible with the amount of samples the
industry have to handle every day.

Also, normally drivers are embedded inside the main
malware component and will be dropped to the system
when the main component is executed. However, quite
often the dropped driver is named by its characteristics,
e.g. Hacktool.Rootkit2, not by the malware using it. From
the end-user’s point-of-view this is a good thing but it
makes it very difficult for researchers to make any conclu-
sions how many different families are using kernel-mode
components without actually executing every sample and
checking what kind of components they are dropping to
the system.

Despite all the uncertainty the author feels confident
to make a conclusion based on the achieved results that
number of kernel-mode malware has steadily increased
during the investigated time period. This is very evident
from year 2005 onwards, which is mostly explained by
the increased number of malware starting to use kernel-
mode rootkits to hide their presence on the compromised
system. There is a noticeable difference in the number of
samples from 2005 onwards between the two vendors. In
vendor Y’s case the curve is more stable where the amount
of driver samples has approximately tripled every year.
The raw number of new samples per month is not that
interesting since these samples contain lots of variants of
the same family. Probably more interesting information
is the number of new malware families that were identi-
fied to be using kernel-mode drivers. This gives a better
picture of the kernel malware trend.

During year 2003 an average of 0.67 new malware fami-
lies per month were identified to utilize kernel-mode driv-
ers. Year 2004 was still quite calm when an average of one
new family per month was identified. The trend changed
dramatically during year 2005 when an average of 3.42
new kernel malware families was found. Since then things
have calmed down a bit but the usage of kernel malware is
still growing strongly with an average of 2.63 new families
found each month. Table 1 contains the list of most active
families based on the number of new variants seen.

Table 1. Most commonly used kernel-mode malware.
F-Se�ure Sy���n�e� ��A�ee

Backdoor.Win32.Haxdoor Backdoor.Haxdoor Backdoor-BAC

Backdoor.Win32.HacDef Backdoor.HackDefender HackerDefender trojan

Trojan-Spy.Win32.Banker Infostealer.Bancos PWS-Banker trojan

Backdoor.Win32.PcClient Backdoor.Formador BackDoor-CKB trojan

Trojan-Spy.Win32.Goldun Trojan.Goldun PWS-Goldun trojan

Trojan.Win32.Crypt.t Spyware.Apropos.C Adware-Apropos

SpamTool.Win32.Mailbot Backdoor.Rustock.A Spam-Mailbot trojan

2. This is a generic detection name used by Symantec for rootkits.

Trojan-Clicker.Win32.Costrat Backdoor.Rustock.B Spam-Mailbot.c trojan

Other important families worth to mention that have
been seen to utilize kernel-mode code are Email-Worm.
Win32.Bagle and Mydoom-based Email-Worm.Win32.
Gurong [10]. In addition usage of kernel-mode rootkit
drivers has been very common in IRC bots such as Back-
door.Win32.SdBot and Backdoor.Win32.Rbot.

The high rise in popularity of kernel malware can be
mostly explained by the increased motivation for malware
authors to hide their creations from detection as long
as possible. To hide even better they have started to use
kernel-mode rootkit techniques as more and more doc-
umentation, examples and fully working examples with
full source code has become publicly available. However,
there are other motives for malware to move to kernel,
probably most important ones being firewall and antivi-
rus scanner bypassing.

Key Te��n�ques Used by Kernel ��l��re

One reason why kernel malware has been so rare is that
developing kernel-mode drivers is not easy. The environ-
ment limits the developer’s creativity since it offers only a
limited number of exported library functions, documen-
tation is limited and there is less examples and source code
available that can be used as a template for the malicious
work. Today the situation is changing. More information
is published about how to do things required by today’s
malware directly from kernel mode. This includes how to
implement better rootkits, how to bypass personal fire-
walls and how to create backdoors and IRC bots.

To better understand the threat of kernel malware it is im-
portant to know how they work. This chapter tries to give
a brief introduction on the key techniques that are used
by kernel malware.

Executing code in Ring 0

The first requirement for a malware trying to obtain the
powers of kernel malware is to execute its code in the most
privileged level – ring 0. The author has seen malware us-
ing two different techniques to achieve this, kernel-mode
drivers and call gates.

Kernel-Mode Drivers
The only documented way to execute third party kernel-
mode code is to install a kernel-mode driver. They are
loadable kernel-mode modules, usually having extension
.sys, and execute in one of three contexts:

In the context of user-mode thread that initiated an ■

AVAR 2006 - AucklAnd

I/O handler function

In the context of kernel-mode system thread

In the context of random thread as a result of an
interrupt

Structurally they are identical to any other PE file. Kernel-
mode drivers can use support routines that are exported
by various components of the OS kernel. These routines
support I/O, configuration, Plug and Play, power man-
agement, memory management, and numerous other OS
features. [34]

Typically, drivers are loaded and started at OS boot time.
However, Windows API provides necessary functions
that allow loading and unloading drivers at run time. This
is done by the Service Control Manager (SCM). A new
driver can be installed with the CreateService API func-
tion. This function has the following syntax [37]:

 SC _ HANDLE
 CreateService(
 SC _ HANDLE hSCManager,
 LPCTSTR lpServiceName,
 LPCTSTR lpDisplayName,
 DWORD dwDesiredAccess,
 DWORD dwServiceType,
 DWORD dwStartType,
 DWORD dwErrorControl,
 LPCTSTR lpBinaryPathName,
 LPCTSTR lpLoadOrderGroup,
 LPDWORD lpdwTagId,
 LPCTSTR lpDependencies,
 LPCTSTR lpServiceStartName,
 LPCTSTR lpPassword
);

Here, the important parameters are hSCManager,
dwServiceType, dwStartType, and lpBina-
ryPathName. The hSCManager parameter is a han-
dle to the SCM database, which can be obtained with the
OpenSCManager API function. The dwService-
Type parameter specifies the type of the service that will
be installed. In this case, it must have the value of SER-
VICE _ KERNEL _ DRIVER. The dwStartType
parameter defines the startup behavior of the driver when
the system boots up. The final parameter of interest is the
lpBinaryPathName, which is a pointer to a null-ter-
minated string that contains the fully qualified path to
the driver binary file. [37]

A successful call to the CreateService API function
creates a service object, returns a handle to this object,
and installs the service in the SCM database by creating a
key with the same name as the service under the following
registry key:

■

■

HKEY _ LOCAL _ MACHINE\System\Current-
ControlSet\Services

The driver can be started by passing the service object
handle to the StartService API function. This
causes the system to perform some actions that are simi-
lar to loading a normal user-mode DLL. An image of the
driver’s PE file is loaded into system address space and the
entry point of the driver is called. The entry point is also
known as the DriverEntry, which has following pro-
totype [22]:

 NTSTATUS
 DriverEntry(
 IN PDRIVER _ OBJECT DriverObject,
 IN PUNICODE _ STRING RegistryPath
);

DriverEntry routine always runs in the context of
the system thread. This routine is called only once dur-
ing the lifetime of the driver and its only purpose is to
initialize the driver. However, this is all that is required
for the malware to execute its payload, which quite often
involves hooking kernel functions or installing additional
notification functions or system threads to perform any
further work. [22]

There exists another way to load and execute a kernel-
mode driver from user mode.

This method is not documented by Microsoft in any way.
The existence of this method was announced by Hoglund
[38] in his post to the BugTraq mailing list.

More recent information can be found in the book writ-
ten by Hoglund and Butler [15]. This method uses the
ZwSetSystemInformation function exported by
Ntdll.dll and has the following syntax [23]:

 NTSYSAPI
 NTSTATUS
 NTAPI
 ZwSetSystemInformation(
 IN SYSTEM _ INFORMATION _ CLASS
 SystemInformationClass,
 IN OUT PVOID SystemInformation,
 IN ULONG SystemInformationLength

);

The SystemInformationClass parameter speci-
fies the type of system information to be set. In this case
it is set to value of SystemLoadAndCallImage,
which is part of the SYSTEM _ INFORMATION _
CLASS enumeration. The SystemInformation pa-
rameter points to the data will be set. In this case, it will be

AVAR 2006 - AucklAnd

defined as a structure that has the following syntax [23]:

typedef struct _ SYSTEM _ LOAD _ AND _ CALL _
IMAGE {
UNICODE _ STRING ModuleName;
} SYSTEM _ LOAD _ AND _ CALL _ IMAGE, *PSYS-
TEM _ LOAD _ AND _ CALL _ IMAGE;

The ModuleName element specifies the full path of the
module that will be loaded in Unicode format. The last
parameter of the ntdll!ZwSetSystemInformati
on function specifies the size in bytes of the data pointed
by the SystemInformation parameter. After a suc-
cessful function call, the system loads the module into the
system address space and calls its entry point. This tech-
nique has both good and bad features.

The upside for malware is that it leaves no information
into the SCM database. This method provides malware a
way to load and execute a kernel-mode driver in a single
operation without leaving any traces of its existence in the
registry. Because the SCM is not aware of the driver, it
is not able to control it in any way. The driver cannot be
unloaded and it will survive in memory until the next re-
boot.

The downside for malware is that the driver will not be
started after the system has been rebooted. Another prob-
lem is that memory for the driver image will be allocated
from the paged pool, which restricts the kind of opera-
tions the driver can execute. Otherwise it risks of crashing
the system with a blue screen. There are ways to avoid this
problem but it will make the driver code more complex
and harder to maintain [15].

As expected, the documented way is the one used by most
malware to execute code in kernel mode. If it works, there
is no reason for malware to search for alternate means.
This might change in the future when more security prod-
ucts start to block loading of kernel-mode drivers.

Call Gates
Call gates are a less known technique to execute third
party kernel-mode code. They are provided by the Intel
architecture and can be used to transfer program con-
trol between different privilege levels. Call gates reside in
the system address space. A user-mode process has to be
able to modify it to add its own call gate. This is possible
through two undocumented Windows OS features that
are discussed next.

The first method was first discovered by Mark Russino-
vich [32] and it was further documented by Crazylord
[3]. It uses a section object named \Device\Physi-

calMemory, which allows a user-mode application to
map portions of the physical memory into its own address
space. This technique is known to malware and has been
used before by some malware variants to hide themselves
using rootkit techniques [21]. This technique has its
problems since it accesses physical memory. The malware
needs to calculate virtual to physical address translation
correctly. Email-Worm.Win32.Fanbot.j3 was the first one
that did the translation properly and therefore had better
support for different OS versions [4].

The second method to access the system address space
from user mode is more useful because it uses virtual ad-
dresses instead of physical addresses. This method uses
the ZwSystemDebugControl function exported by
Ntdll.dll and has the following syntax [23]:

 NTSYSAPI
 NTSTATUS
 NTAPI
 ZwSystemDebugControl(
 IN DEBUG _ CONTROL _ CODE ControlCode,
 IN PVOID InputBuffer OPTIONAL,
 IN ULONG InputBufferLength,
 OUT PVOID OutputBuffer OPTIONAL,
 IN ULONG OutputBufferLength,
 OUT PULONG ReturnLength OPTIONAL
);

To use this function the caller is required to have the
SeDebugPrivilege enabled. The important field
here is the ControlCode, which defines the mode of
operation. Valid values are defined in the DEBUG _ CON-
TROL _ CODE enumeration. However, this enumeration
has not been documented since Windows 2000.

Randnut’s [26] post to the Bugtraq mailing list showed
that new features were added to the ntdll!ZwSystem
DebugControl function on Windows XP and 2003.
The essential information was posted to a public discus-
sion forum by a person known as Bilbo. He claimed that
it was possible to write to the system address space by set-
ting the ControlCode parameter to the value of nine.
He also posted the following example code:

 /*
 * write a buffer to kernel space
 */
 struct {
 LPVOID kernel _ addr;
 LPVOID user _ addr;
 DWORD len;
 } mem;

 void
 wr(LPVOID dst, LPVOID src, DWORD len)

3. Also known as W32.Fanbot.A�mm (Symanted) and W32/My- Also known as W32.Fanbot.A�mm (Symanted) and W32/My-Also known as W32.Fanbot.A�mm (Symanted) and W32/My-
tob.gen�MM (McAfee).

AVAR 2006 - AucklAnd

 {
 mem.kernel _ addr = dst;
 mem.user _ addr = src;
 mem.len = len;
 ZwSystemDebugControl(9, &mem,
 sizeof(mem), 0, 0, 0);
 }

This made it possible for easy access to kernel-mode mem-
ory without any need to for complex address translation
calculations. Lately, ntdll!ZwSystemDebugCont
rol function was documented in much detail by Alex
Ionescu [20]. This might result in more malware using
this approach to enter the kernel. So far the author has
not encountered any malware samples that had used this
technique.

Microsoft has realized the potential problem these un-
documented backdoors to the system address space pose
to the overall security of their operating systems. Since
Windows Server 2003 SP1 they can no longer be called
from user mode [20].

Now that we know the techniques to install the call gate
from ring 3 it is time to see how they actually work. Call
gates are based on the same techniques the OS uses when
it executes kernel-mode code on behalf of the user-mode
application. At the lowest level, this separation of privi-
lege levels is implemented by the protection mechanism
provided by the Intel processors, also known as protected
mode of operation. The reader is assumed to be familiar
with concepts such as memory segmentation and privi-
lege levels. For more information, the reader is advised to
refer to the Intel manuals [16][17][18][19].

To provide a controlled way to transfer program control
between different privilege levels the Intel architecture
provides a facility called call gates. A call gate is defined
by a call-gate descriptor, which may reside in the Global
Descriptor Table (GDT) or in a Local Descriptor Table
(LDT). Figure 2 shows the format of a call-gate descrip-
tor.

Figure 2. Call-gate descriptor Source: [19]

The Segment Selector field in a call gate speci-
fies the code segment to be accessed. The Offset field
specifies the entry point in the code segment. Generally,

it points to the first instruction of a specific procedure.
The Descriptor Privilege Level (DPL) field
indicates the privilege level required to access the selected
procedure through the gate. The Parameter Count
field indicates the number of parameters to copy from the
calling procedures stack to the new stack if a stack switch
occurs.

A call gate is used by specifying a far pointer to the gate
as the target operand in a CALL or JMP instruction. The
pointer consists of a segment selector and an offset. The
segment selector identifies the call gate and the offset is
required, but not used. When the processor has accessed
the call gate and the privilege checks has been success-
fully passed, it uses the segment selector from the call
gate to locate the segment descriptor for the destination
code segment. It then combines the base address from the
code-segment descriptor with the offset from the call gate
to form the linear address of the procedure entry point in
the code segment. Figure 3-2 illustrates this process.

Figure 3. Call-gate mechanism Source: [19]

To execute code residing in user address space at ring 0, all
that has to be done is to add a new call gate to the GDT.
The address and size of the GDT can be obtained with
the SGDT instruction. The GDT is located at the system
address space, so either physical memory device or ntdll!
ZwSystemDebugControl technique can be used to
write the new call-gate descriptor to the GDT. The Off-
set field of the new call-gate descriptor will point to the
payload code. The Segment Selector field should
be set to a code segment that executes at ring 0. The final
thing to remember is to grant access to the call gate from
user mode by setting the DPL field to value 0x3.

Call gates are not a common technique used by today’s
malware. The author has only encountered one case
where a malware used this technique to access ring 0. This
malware is detected as Email-Worm.Win32.Gurong.a4
[10][6]. Gurong.a installed a call gate through the physical
4. Also detected as W32.Mydoom!gen (Symantec) and W32/My- Also detected as W32.Mydoom!gen (Symantec) and W32/My-Also detected as W32.Mydoom!gen (Symantec) and W32/My-
tob.gen�MM (McAfee).

AVAR 2006 - AucklAnd

memory device. The ring 0 code was used to hide its pro-
cess, file, and launch point from the registry. It achieved
this by hooking functions from nt!KiServiceTable
and by removing its process object from internal kernel
lists.

using kernel-Mode Support Routines

To fulfill the requirements for full-kernel malware the
malware has to execute its entire payload in ring 0. The
difficulty level of implementing such malware can vary
from hard to impossible depending on the set of features
it has to support. In case of a basic downloader, it prob-
ably needs to perform following operations:

It allocates memory for storing temporary data

It accesses internet to download the new payload

It stores the file on the file system

It modifies the registry to make sure the new pay-
load will be executed

The Windows kernel provides a set of documented sup-
port routines that can be used by kernel-mode drivers
to perform various tasks. These are documented in the
Windows Driver Kit (WDK) [22], which was previ-
ously known as the Windows DDK. In addition WDK
contains many source code examples how different tasks
can be performed. From the above list all tasks except ac-
cessing internet are very simple to implement from kernel
mode. Following functions would do the job:

ExAllocatePoolWithTag / ExFreePoolWithTag

ZwCreateFile / ZwWriteFile / ZwClose

ZwCreateKey / ZwSetValueKey / ZwClose

If the reader is familiar with Native API, then Zw* func-
tions should look familiar. An excellent reference with
function prototypes is the Native API Reference book by
Nebbett [19]. The kernel exports only a subset of the func-
tions that are exported by Ntdll.dll. On Windows
XP SP2 this subset consists of approximately 130 func-
tions out of 280. In case of unexported functions there are
ways to find the correct address to call. The best of them,
and often used by malware, is to get this information from
Ntdll.dll [27]. Every Zw* function in Ntdll.dll
is implemented in similar way. Below is the disassem-
bled version of ntdll!ZwWriteVirtualMemory:
0x7C90EA32: B815010000 MOV EAX,0x115
0x7C90EA37: BA0003FE7F MOV EDX,0x7FFE0300

0x7C90EA3C: FF12 CALL DWORD PTR [EDX]

■

■

■

■

■

■

■

0x7C90EA3E: C21400 RET 0x14

The first instruction, MOV EAX, 0x115, tells the Sys-
tem Service Dispatcher (SSD) that it should call function
pointer from nt!KiServiceTable located at index
0x115. This function pointer is the address of the real
service function that will perform the requested task. In
this case it would be nt!NtWriteVirtualMemory.

The basic idea is to load Ntdll.dll image from disk
into memory and then to find the entry point of the re-
quired function from the PE header’s export table. Fol-
lowing simple piece of code fetches the index which can
then be used to get the correct function pointer from the
service table.

ulSSN = *(PULONG)((PUCHAR)pbNativeAPIFunction + 1);

This allows kernel-mode code to have the full Native API
in its arsenal. However, there are still limitations what can
be done and when. This is mostly caused by the fact that
kernel-mode code can execute in one of three contexts –
user thread, system thread or random. If the code executes
in user thread context and the thread’s PreviousMode
field equals UserMode, then extra argument validation
is done for the passed parameters. This means that any
passed pointers must reside in user address space or oth-
erwise the operation will fail. The easiest way to solve this
is to make sure the routines are always called from system
thread context.

One topic that has not yet been discussed is how internet
can be accesses from ring 0. This is an important feature
for the simple downloader since otherwise it will not be
able to fetch the new payload. This is currently the hot
topic in the field of kernel malware. It is worrying to see
how the number of working solutions with full source
code is published by various authors [28][29][30][15]15]]
that will eventually make it easier for more malware to
enter the kernel. This topic is worth another research pa-
per and will not be discussed any further.

Executing code in Ring 3

In an ideal world kernel malware should do all its tasks
from ring 0. However, this is not always feasible since it
would require too much effort to implement some librar-
ies that are only available from user mode. In addition,
there are situations where it is beneficial for the malware
to execute at high enough level. A good example of such
malware is a trojan that steal user’s banking credentials.
Normally, communication between the client and server
is encrypted and encryption is done at user mode. If the
malware intercepted the data from kernel mode, it would

AVAR 2006 - AucklAnd

already be in encrypted format. In this case a better ap-
proach would be to execute parts of the code in ring 3 in
the context of the process where the credentials are stored
before encryption.

Malware that initially executes at ring 0 but later executes
parts of its payload in ring 3 has been very rare to the
author’s knowledge. Virus.Win32.Chatter, which was al-
ready mentioned, is one of them. Also, both sample cases
that will be investigated in more detail in the case studies
use this approach.

There exist two methods that have been used by malware
to accomplish this. First one involves allocating memory
from the target process, writing the payload into the allo-
cated buffer, and finally making sure that the process will
execute the payload either by hooking some function or
by modifying the context of one of its threads. The second
one uses Asynchronous Procedure Call (APC) mecha-
nism provided by the OS. The benefit of the second tech-
nique from the malware point of view is that APC is a
normal operation and it would be very hard to identify
malicious APC operations amongst legitimate operations
performed by the OS itself.

Solomon and Russinovich [34] define APC as a function
that provides a way for ring 3 and ring 0 applications to
execute code in the context of a chosen user thread and
hence a process address space. Windows OS supports
both user- and kernel-mode APCs. User-mode APC can
be used to execute code in ring 3.

The idea of using user-mode APC to execute code from
kernel mode in ring 3 is not new. Anatoly Vorobey already
brought out this idea in year 1997 [25]. However, his ap-
proach did not take into account the need to allocate and
map the ring 3 payload code into the address space of the
target process. A complete solution with full source code
was published in rootkit.com by Valerino in February
2005 [31]. Below is a skeleton code to execute code from
kernel mode in ring 3.

pMdl = IoAllocateMdl(pPayloadBuf,
 dwBufSize, FALSE,FALSE,NULL);

// Lock the pages in memory
_ _ try
{
 MmProbeAndLockPages(pMdl, KernelMode,
IoWriteAccess);
}
_ _ except (EXCEPTION _ EXECUTE _ HANDLER){}

// Map the pages into the specified process
KeStackAttachProcess(pTargetProcess,
 &ApcState);
MappedAddress = MmMapLockedPagesSpecifyCa

che(pMdl, UserMode, MmCached, NULL, FALSE,
NormalPagePriority);
KeUnstackDetachProcess(&ApcState);

// Initialize APC
KeInitializeEvent(pEvent, NotificationEvent,
 FALSE);
KeInitializeApc(pApc, pTargetThread, Origi-
nalApcEnvironment, &MyKernelRoutine, NULL,
MappedAddress, UserMode, (PVOID)NULL);

// Schedule APC
KeInsertQueueApc(pApc,pEvent,NULL,0)

One important thing with user-mode APC is that the tar-
get thread has to be in alertable state before it will call the
APC function [37].

So far the author has seen Valerino’s technique, which is
the most advanced one, to be used by only one malware
family, named SpamTool.Win32.Mailbot5. In many ways
this malware family is special and applies lots of ideas
presented by various rootkit researchers into real-life mal-
ware. Mailbot will be discussed in more detail in Case
Study 2, later in this paper.

C�se S�udy 1�� H�xd��r

Haxdoor [7][8] is a powerful backdoor with rootkit and
spying capabilities. It has been around for a long time but
especially during year 2006 it has received lots of attention
because of its involvement in various high-profile phish-
ing, pharming and identity theft attacks [13][14][1].
Haxdoor is a good example of today’s malware that uti-
lizes kernel-mode code to make its detection and removal
more difficult and to circumvent personal firewalls.

First Haxdoor, named Backdoor.Win32.Haxdoor.a6, was
found in August 2003. It had three components, a PE exe-
cutable, a DLL and a kernel-mode driver. The executable’s
main purpose was to install and launch the other compo-
nents. The DLL was the main part implementing back-
door and information stealing functionality. It utilized
the driver when it had to do operations that cannot be
done from user mode on Windows NT based platforms.
The services include low-level I/O operations, dumping
of SAM database to a file and hooking of nt!NtQuerySy
stemInformation from nt!KiServiceTable to hide
haxdoor’s process from other applications.

From those times Haxdoor’s driver has evolved but inter-
estingly many of the old features are still present, includ-
5. Also known as Backdoor.Rustock.A (Symantec) and Spam-Mail- Also known as Backdoor.Rustock.A (Symantec) and Spam-Mail-Also known as Backdoor.Rustock.A (Symantec) and Spam-Mail-
bot trojan (McAfee).
6. Also detected as Backdoor.Trojan (Symantec) and BackDoor- Also detected as Backdoor.Trojan (Symantec) and BackDoor-Also detected as Backdoor.Trojan (Symantec) and BackDoor-
BAC Trojan (McAfee).

AVAR 2006 - AucklAnd

ing I/O operations to enable/disable the keyboard, play-
ing such tricks as opening and closing the CD-ROM tray
or in the worst case resetting the CMOS.

During the last year, Haxdoor driver has changed very
little. The driver is actually very simple but still does some
extremely powerful tricks to make detection and removal
of it hard unless its inner workings are well known. Below
is the list of most important features it implements:

process and file hiding

protection of its own threads and processes against
termination

protection of its own files against any access

payload injection into created processes

Surprisingly it still misses some important features such as
hiding of its launch points from the registry. Today, basic
feature set of a rootkit-enabled malware includes at least
hiding of its files, registry keys/values and processes.

Process and file hiding are implemented by replacing
function pointers for nt!NtQuerySystemInform
ation and nt!NtQueryFileInformation in
nt!KiServiceTable with special hook functions
implemented by the driver. These hook functions first
call the original service function that fetches the corre-
sponding information from the system beneath and then
remove any entries from the collected data that the mal-
ware wants to hide from other applications.

Haxdoor protects its own threads and processes in a simi-
lar way. Instead it now hooks nt!NtOpenThread and
nt!NtOpenProcess. If the hook function notices
that another process tries to open a handle to the malware
process or any of its threads with PROCESS _ TERMI-
NATE or THREAD _ TERMINATE access rights, it
replaces the target id with the one of the calling thread or
process respectively. This results that the thread or process
trying to terminate the malware gets terminated instead.

■

■

■

■

Figure 4. Haxdoor protects its own process against termi-
nation.

Haxdoor’s file protection scheme is very simple but ex-
tremely powerful. Any user-mode code has a hard time
trying to get access to any file under protection by the
malware driver. When the driver starts, it first opens a
handle to the protected files with no share access which
gives it exclusive access to them. Just as a precaution it also
takes an exclusive lock over the whole file content by using
nt!NtLockFile. Since this is done from the kernel in
the system thread context, the created handle is not acces-
sible from user mode. Only way to bypass the file locking
is to do it from kernel.

Probably the most interesting and unique feature of the
driver is its payload injection into newly created process-
es. This is done by hooking nt!NtCreateProcess
and nt!NtCreateProcessEx functions from
nt!KiServiceTable. The former is used on Win-
dows 2000 whereas the latter is used on Windows XP
and Windows Server 2003. The consequence is that
when a new process is created the hook will be executed.
First, the hook calls the original function so that the new
process is actually created. Then, before returning control
to the creator it executes its additional payload, which is
illustrated in the following figure.

AVAR 2006 - AucklAnd

Figure 5. Haxdoor injects its payload into newly created
processes before they start to execute.

The payload, detour _ NtCreateProcessEx,
first checks if the calling process belongs to the back-
door or if it is an important system process that should
not be tampered with. In case of a normal process it
executes the code that will do the actual injection. The
purpose of the injection is to copy the position indepen-
dent code from the driver’s data section into the new pro-
cess’ address space and to insert an additional hook into
ntdll!LdrLoadDll, which will trigger the injected
payload when the process starts to execute. First, the driv-
er calls nt!NtProtectVirtualMemory to change
protection to allow writing to those virtual memory pag-
es that will be overwritten by the hook. Then, it allocates
memory from the process’ address space and writes the
injected payload into it. Finally, it overwrites the begin-
ning of ntdll!LdrLoadDll with a relative JMP in-
struction pointing to the new payload.

The outcome is that whenever the process starts to load a
DLL the injected code will be executed. What this code
actually does is out of the scope of this paper. Briefly, it will
prevent various security product related processes from
starting, it will load and execute the backdoor DLL and
it will install additional hooks into numerous network
related functions that will allow it to conduct phishing,
pharming and stealing of user credentials.

Haxdoor is special in many ways. Its early deployment
of kernel-mode code and rootkit techniques has made it
to stand out from the rest. Its usage of kernel-mode hid-
ing, self-protection and remote injection techniques has
made it challenging for security products to deal with.

In today’s standards its rootkit techniques are nothing
spectacular and properly designed kernel-mode real-time
antivirus scanners can easily detect and disable its files.
However, Haxdoor’s code injection technique can still be
considered extremely powerful and is still able to bypass
several firewalls even though protection against remote
code injection is considered to be a basic requirement for
a modern firewall.

C�se S�udy 2�� ���lb�� ���� C�s�r��

Mailbot [9] is the most powerful and stealthiest rootkit
seen so far. In many ways it puts into practice the ideas
of “Stealth by Design” malware introduced by Joanna
Rutkowska in January 2006 [33]. Latest Mailbot vari-
ants have only a single kernel-mode driver. However, they
are not full-kernel malware since they carry an encrypted
DLL that will be executed in ring 3. The DLL is a highly
sophisticated spambot with backdoor capabilities. Today,
Mailbot’s detection and removal is still a challenge to
most rootkit detectors and antivirus solutions.

First Mailbot, named SpamTool.Win32.Mailbot.a7, was
found in December 2005. It had three components, a
PE executable, a DLL and a kernel-mode driver. The
PE executable was a dropper, which installed the other
components. The DLL was the main component and it
was loaded into Winlogon.exe process when the system
started. The kernel-mode driver hooked three functions
from nt!KiServiceTable, namely
nt!NtEnumerateKey,
nt!NtEnumerateValueKey and nt!NtQuery
DirectoryFile. Their purpose was to hide all files
and launch points created by the malware. In addition, it
hooked IRP _ MJ _ CREATE, IRP _ MJ _ CLOSE
and IRP _ MJ _ DEVICE _ CONTROL handler func-
tions from Tcpip driver object to hide all TCP and UDP
connections the DLL had established.

The author analyzed his first Mailbot variant, Spam-
Tool.Win32.Mailbot.az8 [25], in 27th of May 2006 af-
ter it was submitted by a malware collector who had
noticed that every rootkit detection tool he was using,
including F-Secure BlackLight, was not able to find
the rootkit. It consisted only of a single kernel-mode
driver that was stored as hidden data stream attached
to the system32 folder. In three weeks a new and im-
proved version of BlackLight was released that was again
able to find the hidden driver from the system [12].

7. Detected also as Hacktool.Spammer (Symantec). Detected also as Hacktool.Spammer (Symantec).Detected also as Hacktool.Spammer (Symantec).
8. Detected also as Backdoor.Rustock.A (Symantec) and Spam- Detected also as Backdoor.Rustock.A (Symantec) and Spam-Detected also as Backdoor.Rustock.A (Symantec) and Spam-
Mailbot trojan (McAfee).

AVAR 2006 - AucklAnd

It was evident that this malware was something special.
Since then the author has been closely following its evo-
lution and analyzing its inner workings. This malware
applies into real-life many ideas that have been discussed
in various rootkit-related sites and security conferences.
From the disassembled code it becomes quite evident that
the malware author has benefited from source code pub-
lished in rootkit.com and the book about rootkits [15]. A
detailed analysis of the Mailbot was recently published in
VB Magazine September issue [5].

 A new variant of Mailbot appeared in 3rd of July and it
went a step further in its stealth capabilities. Interest-
ingly it was named as Trojan-Clicker.Win32.Costrat.a9.
Since detailed information is available of the old variants
[9][5], the rest of this chapter will talk about some of the
new features . Figure 6 shows the new main routine of a
recent Costrat variant.

Figure 6. Main routine of Trojan-Clicker.Win32.Costrat.

SpamTool.Win32.Mailbot.az took control of the System
Service Dispatcher (SSD) by hooking INT 0x2E and
IA32 _ SYSENTER _ EIP MSR handler function. A
thread trying to execute any of the following service func-
tions was redirected to a modified version by setting the
thread’s KTHREAD->ServiceTable field to point to
another table created by the malware.

NtCreateKey

NtDeviceIoControlFile

NtEnumerateKey

9. Detected also as Backdoor.Rustock.B (Symantec) and Spam- Detected also as Backdoor.Rustock.B (Symantec) and Spam-Detected also as Backdoor.Rustock.B (Symantec) and Spam-
Mailbot.c trojan (McAfee).

■

■

■

NtOpenKey

NtQueryKey

NtQuerySystemInformation

NtSaveKey

Mailbot’s approach to hook service functions on a thread-
level basis was unique and the stealthiest seen so far. Fo-
rensic tools have mainly been looking for hooks from
nt!KiServiceTable and from inside system service func-
tion. Thus they were not successful in finding mailbot’s
hooks. The problem was still that some more advanced
tools checked the address of INT 0x2E and IA32 _
SYSENTER _ EIP MSR handler functions. If the ad-
dress was outside the kernel module, it was a clear indica-
tion that something suspicious was going on.

Costrat solved this problem by searching for unused
memory inside the kernel module and then redirecting
the hook through this address. This is clearly illustrated
by the following kernel debugger dumps:

kd> rdmsr 176
msr[176] = 00000000̀ 806c15bd

kd> lm a 806c15bd
start end module name
804d7000 806e2000 nt

kd> u 806c15bd
nt! _ NULL _ IMPORT _ DESCRIPTOR <PERF>
(nt+0x1ea5bd):
806c15bd e9a249bd77 jmp
lzx32!SysCallHookGen (f8295f64)

The debugger output shows that the handler function is
in address 0x806c15bd which is inside the kernel mod-
ule. The disassembly of the handler function shows how
Costrat redirects the execution through this address to
the real hook function.

Latest Costrat variants have introduced a new feature that
has not previously been available. They hook a new sys-
tem service function named NtTerminateProcess.
The actual hooking is implemented in identical way but
the hook itself is special. The purpose of the hook is to al-
low for the injected DLL to communicate with the driver
without leaving any extra traces to the system. Figure 7Figure 77
shows the disassembly of the kernel-mode hook function
and the relevant code from the DLL where the covert
channel is used.

■

■

■

■

AVAR 2006 - AucklAnd

Figure 7. User-mode DLL uses the private communication
channel and instructs the driver to update itself.

Latest Costrat variants are able to update themselves on-
the-fly from the control servers. The DLL uses its private
communication channel to instruct the driver to replace
its file on the disk with the new version. Then it com-
mands the driver to inject and execute the new DLL into
services.exe. Finally the old DLL releases its resources and
terminates. From this point onwards the new DLL is ac-
tive and interoperates with the old driver. The new kernel-
mode code is taken into use only after reboot. Lately this
feature has been used quite often to update the list of IP
addresses and DNS names it uses when it needs to con-
nect to its control server. This makes it extremely hard to
disable the bot network by trying to shutdown its control
servers.

Mailbot aka Costrat is powerful. It has features that should
not go public. One example is its ability to fully bypass
filter drivers. Real-time antivirus scanners and some fire-
walls are often implemented as filter drivers. They can’t do
anything if the malicious data never goes through them.

C�n�lus��n

Current security solutions, including antivirus scanners
and firewalls, have not been designed to protect the end-
user against malicious software that operates in ring 0.
There are good reasons for this. One reason is that once
the malware executes its code with same privileges as the
OS itself, it will become an arms race between the good
and bad. This has already been seen with rootkits and their
anti-detection engines. After the rootkit notices that it is
no longer able to hide from the rootkit detector and is
going to loose the game, it changes tactics and starts to
make a direct attacks against the detector. It might take a
more aggressive approach and prevents the rootkit detec-
tor from starting. Or it could directly patch the rootkit
detector’s code to change its inner logic.

The statistical analysis that was performed, and discussed
in the earlier section on History and Trends, showed
that there has been a visible rise in the number of mal-
ware employing kernel-mode modules as part of their
payload. Majority of the modules have been kernel-mode

rootkits that the malware uses to hide its main compo-
nent and thus make its detection and removal as difficult
as possible.

This paper has shown the basic techniques that kernel
malware is using to do their job. Their main role has been
to perform some specific tasks for the main user-mode
component. However, the scene is changing. There has
been lots of interest in various research groups to inves-
tigate for the possibilities to do more complex tasks di-
rectly from kernel. The next big thing is going to be the
network side. This year we have already seen presenta-
tions talking about how backdoors can be implemented
directly from kernel mode using only the NDIS layer and
custom TCP/IP stack. We have also seen a presentation
about bypassing personal firewalls from kernel-mode.

Finally, the antivirus industry has seen Trojan-Clicker.
Win32.Costrat aka Backdoor.Rustock.B. For any mal-
ware researcher who has been analyzing kernel malware
this case should have been an eye-opener. It has shown
that complex tasks can be done from kernel mode with-
out affecting the overall system stability. Now, it is time to
start thinking how this threat can be countered.

Re�eren�es

AusCERT - Media Release - Response to recent
media coverage of the A-311 Death (aka: Haxdoor)
trojan. Available from: <http://www.auscert.org.
au/render.html?it=6581>

Chiriac, Mihai. (2003). Virus Analysis 2: XP, A
New Virus Playground. Virus Bulletin Magazine
June 2003. ISSN 0956-9979. pp. 7-8.

Crazylord. (2002). Playing with Windows /dev/
(k)mem. Phrack Magazine, Issue 59. Available
from: <http://www.phrack.org/phrack/59/p59-
0x10.txt>

Florio, Elia. (2005). Feature 2: When Malware
Meets Rootkits. Virus Bulletin Magazine Decem-
ber 2005. ISSN 0956-9979. pp. 7-10.

Florio, Elia; Pathak, Prashant. (2006). Rootkit
Analysis: Raising the Bar, Rustock and Advances
in Rootkits. Virus Bulletin Magazine September
2006. ISSN 1749-7027. pp. 6-9.

F-Secure Virus Information Pages : Gurong.A.
Available from: <http://www.f-secure.com/v-
descs/gurong_a.shtml>

1.

2.

3.

4.

5.

6.

AVAR 2006 - AucklAnd

F-Secure Computer Virus Information Pages:
Haxdoor. Available from: <http://www.f-secure.
com/v-descs/haxdoor.shtml>

F-Secure Computer Virus Information Pages:
Haxdoor.ki. Available from: <http://www.f-se-
cure.com/v-descs/haxdoor_ki.shtml>

F-Secure Rootkit Information Pages: Mailbot.
AZ. Available from: <http://www.f-secure.com/
v-descs/mailbot_az.shtml>

F-Secure: News from the Lab - March of 2006 -
How Would You Like Your Bagle Done, with Root-
kits on the Side? Available from: <http://www.
f-secure.com/weblog/archives/archive-032006.
html#00000841>

F-Secure: News from the Lab – March of 2006
– From Russia with Rootkit. Available from:
<http://www.f-secure.com/weblog/archives/ar-
chive-032006.html#00000838>

F-Secure: News from the Lab – June 2006 – Hid-
ing the Unseen. Available from: <http://www.
f-secure.com/weblog/archives/archive-062006.
html>

F-Secure: News from the Lab - August of 2006
- Haxdoor.KI Being Spammed. Available from:
<http://www.f-secure.com/weblog/archives/ar-
chive-082006.html#00000951>

F-Secure: News from the Lab - October of 2006 -
Denmark targeted. Available from: <http://www.
f-secure.com/weblog/archives/archive-102006.
html#00000988>

Hoglund, Greg; Butler, James. (2005). Rootkits:
Subverting the Windows Kernel. Upper Saddle
River, NJ. Addison-Wesley Professional. 324 pag-
es. ISBN 0-321-29431-9.

Intel. (2006). Intel 64 and IA-32 Architectures
Software Developer’s Manual. Volume 1: Basic Ar-
chitecture. Mt. Prospect, IL, Intel Corporation.
Available from: < ftp://download.intel.com/de-
sign/Pentium4/manuals/25366521.pdf>

Intel. (2006). Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual. Volume 2A: Instruction
Set Reference, A-M. Mt. Prospect, IL, Intel Cor-
poration. Available from: <ftp://download.intel.
com/design/Pentium4/manuals/25366621.pdf>

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Intel. (2006). Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual. Volume 2B: Instruction
Set Reference, N-Z. Mt. Prospect, IL, Intel Cor-
poration. Available from: <ftp://download.intel.
com/design/Pentium4/manuals/25366721.pdf>

Intel. (2006). Intel 64 and IA-32 Architectures
Software Developer’s Manual. Volume 3: System
Programming Guide. Mt. Prospect, IL, Intel Cor-
poration. Available from: <ftp://download.intel.
com/design/Pentium4/manuals/25366821.pdf>

Ionescu, Alex. (2006). Subverting Windows 2003
SP1 Kernel Integrity Protection Available from:
<Available from: http://www.tinykrnl.org/re-
con2k6.pdf>

Kasslin, Kimmo; Stahlberg, Mika; Larvala, Sam-
uli; Tikkanen, Antti. (2005). Hide ‘n seek revisited
– full stealth is back. IN: Proceedings of the 15th
Virus Bulletin International Conference, 5-7 Oc-
tober 2005, Dublin, Ireland. Abingdon, England,
The Pentagon. pp. 147-154.

Microsoft: Windows Driver Kit (WDK) – Over-
view. Available from: <http://www.microsoft.
com/whdc/devtools/wdk/default.mspx>

Nebbett, Gary. (2000). Windows NT/2000 Na-
tive API Reference. Indianapolis, Indiana, Sams
Publishing. 528 pages. ISBN 1-5787-0199-6.

Nikishin, Andy. (1999). Virus Analysis 2, Inside
Infis. Virus Bulletin Magazine November 1999.
ISSN 0956-9979. p. 8.

NT Drivers: Usenet Archives - Forum: comp.
os.ms-windows.programmer.nt.kernel-mode –
User mode APCs. Available from: <http://www.
cmkrnl.com/arc-userapc.html>

Randnut. (2004). Multiple WinXP kernel vulns
can give user mode programs kernel mode privileg-
es. BugTraq February 18. Available from: <http://
www.securityfocus.com/archive/1/354392>

Rootkit.com: Simple Hooking of Functions not Ex-
ported by Ntoskrnl.exe. Available from: <https://
www.rootkit.com/newsread.php?newsid=248>

Rootkit.com: Kernel mode sockets library for the
masses Available from: <https://www.rootkit.
com/newsread.php?newsid=416>

Rootkit.com: Kernel mode Ircbot Available

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

AVAR 2006 - AucklAnd

rom: <https://www.rootkit.com/newsread.
php?newsid=467>

Rootkit.com: some ideAs About steAlth for rootkit
Available from: <http://www.rootkit.com/news-
read.php?newsid=445>

Rootkit.com: Showtime : *WORKING* Cre-
ateProcess in KernelMode! Available from:
< h t t p s : / / w w w. r o o t k i t . c o m / n e w s r e a d .
php?newsid=259>

Russinovich, Mark. (1998). NT’s “\dev\kmem”.
Available from: <http://www.sysinternals.com/
ntw2k/info/tips.shtml#kmem>

Rutkowska, Joanna. (2006). Rootkit Hunting vs.
Compromise Detection. IN: Proceedings of the
2006 Black Hat Federal, 25-26 January, Washing-
ton DC. Seattle, WA, Black Hat, Inc.

Solomon, David; Russinovich, Mark. (2005).
Microsoft Windows Internals: Microsoft Windows
Server 2003, Windows XP, and Windows 2000.
4th edition. Redmond, Washington. Microsoft
Press. 935 pages. ISBN 0-7356-1917-4.

Szor, Peter. (2000). Virus Analyses: Poetry In Mo-
tion. Virus Bulletin Magazine April 2000. ISSN
0956-9979. pp. 6-8.

Szor, Peter. (2005). The Art of Computer Virus
Research and Defense. Upper Saddle River, NJ.
Addison-Wesley Professional. 744 pages. ISBN
0-321-30454-3.

Microsoft Platform SDK Documentation Avail-
able from: <http://msdn.microsoft.com/library/
en-us/sdkintro/sdkintro/devdoc_platform_soft-
ware_development_kit_start_page.asp>

Hoglund, Greg. (2000). Loading Rootkit Us-
ing SystemLoadAndCallImage. BugTraq August
29. Available from: <http://www.securityfocus.
com/archive/1/79379>

30.

31.

32.

33.

34.

35.

36.

37.

38.

